Fatal attractions: abnormal protein aggregation and neuron death in Parkinson's disease and Lewy body dementia.

Cell Death Differ

The Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-4283, USA.

Published: October 1998

The abnormal aggregation of proteins into fibrillar lesions is a neuropathological hallmark of several sporadic and hereditary neurodegenerative diseases. For example, Lewy bodies (LBs) are intracytoplasmic filamentous inclusions that accumulate primarily in subcortical neurons of patients with Parkinson's disease (PD), or predominantly in neocortical neurons in a subtype of Alzheimer's disease (AD) known as the LB variant of AD (LBVAD) and in dementia with LBs (DLB). Aggregated neurofilament subunits and alpha-synuclein are major protein components of LBs, and these inclusions may contribute mechanistically to the degeneration of neurons in PD, DLB and LBVAD. Here we review recent studies of the protein building blocks of LBs, as well as the role LBs play in the onset and progression of PD, DLB and LBVAD. Increased understanding of the protein composition and pathological significance of LBs may provide insight into mechanisms of neuron dysfunction and death in other neurodegenerative disorders characterized by brain lesions containing massive deposits of proteinacious fibrils.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.cdd.4400432DOI Listing

Publication Analysis

Top Keywords

parkinson's disease
8
dlb lbvad
8
lbs
6
fatal attractions
4
attractions abnormal
4
protein
4
abnormal protein
4
protein aggregation
4
aggregation neuron
4
neuron death
4

Similar Publications

Purpose: As the global population of older adults rises, the United Nations Decade of Healthy Ageing (2021-2030) advocates for disease prevention, management, and enhancing overall wellbeing in older adults. We reviewed the MEDLINE literature under the MeSH term "music therapy" (MT), for its role in promoting healthy ageing.

Methods: A systematic search of the MEDLINE biomedical database (Ovid) was conducted using "MT" and "Ageing" as keywords, retrieving relevant full-text studies in English.

View Article and Find Full Text PDF

Adaptive deep brain stimulation (DBS) provides individualized therapy for people with Parkinson's disease (PWP) by adjusting the stimulation in real-time using neural signals that reflect their motor state. Current algorithms, however, utilize condensed and manually selected neural features which may result in a less robust and biased therapy. In this study, we propose Neural-to-Gait Neural network (N2GNet), a novel deep learning-based regression model capable of tracking real-time gait performance from subthalamic nucleus local field potentials (STN LFPs).

View Article and Find Full Text PDF

Loss-of-function mutations in PARK7, encoding for DJ-1, can lead to early onset Parkinson's disease (PD). In mice, Park7 deletion leads to dopaminergic deficits during aging, and increased sensitivity to oxidative stress. However, the severity of the reported phenotypes varies.

View Article and Find Full Text PDF

Susceptibility map-weighted MRI can distinguish tremor-dominant Parkinson's disease from essential tremor.

Sci Rep

January 2025

Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.

Distinguishing between Parkinson's disease (PD) and essential tremor (ET) can be challenging sometimes. Although positron emission tomography can confirm PD diagnosis, its application is limited by high cost and exposure to radioactive isotopes. Patients with PD exhibit loss of the dorsal nigral hyperintensity on brain magnetic resonance imaging (MRI).

View Article and Find Full Text PDF

Metabotropic glutamate (mGlu) receptors are candidate drug targets for therapeutic intervention in Parkinson's disease (PD). Here we focused on mGlu3, a receptor subtype involved in synaptic regulation and neuroinflammation. mGlu3 mice showed an enhanced nigro-striatal damage and microglial activation in response to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!