Bone collagen has a specific molecular ultrastructure which can be proved by birefringence. This protein, forming the main organic component of bone tissue, is known to survive millennia in paleontological bones and teeth. Birefringence of bone collagen obtained from the skeletons of the Nuraghi population living in Sardinia c-ca 1500 years B.C. was found previously by the use of polarizing microscopy [1]. In this paper, using high pressure liquid chromatography (HPLC) techniques, we show the existence of bone collagen cross-links preserved in Nuraghi skeletons after more than 3000 years.

Download full-text PDF

Source
http://dx.doi.org/10.1007/pl00005816DOI Listing

Publication Analysis

Top Keywords

bone collagen
16
collagen cross-links
8
skeletons nuraghi
8
nuraghi population
8
population living
8
living sardinia
8
persistence bone
4
collagen
4
cross-links skeletons
4
sardinia 1500-1200
4

Similar Publications

Sinus membrane perforations are among the most commonly reported intraoperative complications encountered during maxillary sinus floor elevation procedures performed via the lateral window approach. Large perforations (> 10 mm) can pose a major clinical challenge, and often result in failed bone augmentation and poorer long-term implant survival. Owing to these challenges, even a highly skilled oral implant surgeon with advanced training in implantology faced with such perforations may abandon grafting procedures in favor of a reentry approach.

View Article and Find Full Text PDF

This split-mouth trial investigated the efficacy of treating bilateral gingival recessions with either a xenogeneic cross-linked collagen matrix (CCM), or recombinant human platelet derived growth factor (rhPDGF-BB) with a bone allograft (AG). Ten patients were treated with the coronally advanced flap (CAF), either with a CCM, or rhPDGF-BB + AG. The primary outcome was percentage of mean root coverage (mRC) at 12 months.

View Article and Find Full Text PDF

Biomimetic Extracellular Vesicles Containing Biominerals for Targeted Osteoporosis Therapy.

ACS Appl Mater Interfaces

January 2025

Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, People's Republic of China.

Osteoporosis (OP) is a systemic skeletal disorder characterized by decreased bone mineral density and a heightened risk of fractures. Therapies for OP have primarily focused on balancing bone formation and bone resorption, but enhancing the remineralization of osteoporotic bone is also a key strategy for effective repair. Recent insights into biomineralization mechanisms have highlighted the essential role of mineral-containing extracellular vesicles (EVs) secreted by osteoblasts in promoting bone marrow mesenchymal stromal/stem cell (BMSC) differentiation and initiating matrix mineralization.

View Article and Find Full Text PDF

Implanted biomaterials release inorganic ions that trigger inflammatory responses, which recruit immune cells whose biochemical signals affect bone tissue regeneration. In this study, we evaluated how mouse macrophages (RAW264, RAW) and mesenchymal stem cells (KUSA-A1, MSCs) respond to seven types of ions (silicon, calcium, magnesium, zinc, strontium, copper, and cobalt) that reportedly stimulate cells related to bone formation. The collagen synthesis, alkaline phosphatase activity, and osteocalcin production of the MSCs varied by ion dose and type after culture in the secretome of RAW cells.

View Article and Find Full Text PDF

Objective: Research on the link between inflammatory indicators and markers of bone metabolism is currently lacking, especially the interaction between Procollagen type 1 N-terminal propeptide (P1NP), the β-C-terminal telopeptide of type 1 collagen (β-CTX), and the fibrinogen-to-albumin ratio (FAR). This study intends to fill that knowledge gap by investigating the possible link between inflammatory indicators and bone metabolism.

Methods: This observational study included 718 individuals diagnosed with osteoporotic fractures from Kunshan Hospital Affiliated to Jiangsu University between January 2017 and July 2022.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!