Removal of the olfactory bulbs results in numerous physiological and behavioral changes in rats. The most frequent and characteristic change is an abnormally high level of corticosterone in the blood, possibly due to changes in the activity of the hypothalamic neurons which synthesize corticotrophin-releasing hormone (CRH). Some of these neurons also synthesize vasopressin (AVP). They are located in the parvocellular part of the paraventricular nucleus of the hypothalamus, which projects into the external layer of the median eminence. We investigated whether there was such a change in activity by studying the synthesis and storage activity of CRH neurons in bulbectomized rats. CRH and AVP axon terminals in frozen sections of the external layer of the median eminence were labeled by immunofluorescence techniques and the degree of labeling was analyzed semi quantitatively. There was no difference in the area or intensity of CRH-labeling in control and bulbectomized rats. However, a significantly larger area was stained for AVP in the bulbectomized than in control rats. We also used in situ hybridization, with single- and double-labeling, to study the effects of bulbectomy on expression of the genes encoding CRH and AVP. No significant difference was found in the levels of mRNA for CRH and the number of CRH+/AVP+ cell bodies was similar in the parvocellular part of the paraventricular nucleus in bulbectomized and normal rats. Our results suggest that the hypothalamo-pituitary-adrenal (HPA) axis changes observed after olfactory bulbectomy may be due to plastic changes in hypothalamic CRH neurons, resulting in greater storage of increased AVP in CRH neurosecretory nerve terminals in the external layer of the median eminence.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0304-3940(98)00981-1 | DOI Listing |
ACS Nano
January 2025
Department of Chemical and Biomolecular Engineering, Lehigh University, 124 E. Morton Street, Bethlehem, Pennsylvania 18015, United States.
Quantum dot (QD) light-emitting diodes (QLEDs) are promising candidates for next-generation displays because of their high efficiency, brightness, broad color gamut, and solution-processability. Large-scale solution-processing of electroluminescent QLEDs poses significant challenges, particularly concerning the precise control of the active layer's thickness and uniformity. These obstacles directly impact charge transport, leading to current leakage and reduced overall efficiency.
View Article and Find Full Text PDFSoft Matter
January 2025
Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria.
In this work, a theoretical approach is developed to investigate the structural properties of ionic microgels induced by a circularly polarized (CP) electric field. Following a similar study on chain formation in the presence of linearly polarized fields [T. Colla , , 2018, , 4321-4337], we propose an effective potential between microgels which incorporates the field-induced interactions a static, time averaged polarizing charge at the particle surface.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Physics and Astronomy & Wright Center for Photovoltaic Innovation and Commercialization, The University of Toledo, Toledo, Ohio 43606, United States.
Wide band gap FACsPb(IBr) perovskite photovoltaic (PV) devices are measured by spectroscopic ellipsometry in the through-the-glass configuration and analyzed to determine the complex optical property spectra of the perovskite absorber as well as the structural properties of all constituent layers. This information is used to simulate external quantum efficiency (EQE) spectra, to calculate PV device performance parameters such as short circuit current density, open circuit voltage, fill factor, and power conversion efficiency, and to develop strategies for increasing the accuracy of predictions. Simulations and calculations tend to overestimate PV device performance parameters, undermining the accuracy and usefulness of those simulations.
View Article and Find Full Text PDFJ R Soc Interface
January 2025
Department of Engineering Mechanics, KTH Royal Institute of Technology, Stockholm, Sweden.
Culturing living cells in three-dimensional environments increases the biological relevance of laboratory experiments, but requires solutes to overcome a diffusion barrier to reach the centre of cellular constructs. We present a theoretical and numerical investigation that brings a mechanistic understanding of how microfluidic culture conditions, including chamber size, inlet fluid velocity and spatial confinement, affect solute distribution within three-dimensional cellular constructs. Contact with the chamber substrate reduces the maximally achievable construct radius by 15%.
View Article and Find Full Text PDFFree Radic Biol Med
January 2025
Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; Military Institute of Medicine - National Research Institute, Szaserow 128, 04-141 Warsaw, Poland. Electronic address:
Metallofullerenols and fullerenols have attracted attention due to their remarkable ability to interact with various biologically relevant molecules, paving the way for biomedical applications, ranging from medical imaging techniques to drug carriers, acting with increased efficiency and reduced side effects. In this work, we investigated the effects of two fullerene derivatives, Gd@C(OH) and C(OH), on erythrocyte membrane components under oxidative stress conditions induced by 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH) as a source of peroxyl radicals. The results demonstrated that gadolinium encapsulation within the fullerene cage enhanced the electron affinity of Gd@C(OH), resulting in stronger antioxidant activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!