Thermoanaerobacterium thermosulfurigenes EM1 has a gram-positive type cell wall completely covered by a surface layer (S-layer) with hexagonal lattice symmetry. The components of the cell envelope were isolated, and the S-layer protein was purified and characterized. S-layer monomers assembled in vitro into sheets with the same hexagonal symmetry as in vivo. Monosaccharide analysis revealed that the S-layer is associated with fucose, rhamnose, mannosamine, glucosamine, galactose, and glucose. The N-terminal 31 amino acid residues of the S-layer protein showed significant similarity to SLH (S-layer homology) domains found in S-layer proteins of different bacteria and in the exocellular enzymes pullulanase, polygalacturonate hydrolase, and xylanase of T. thermosulfurigenes EM1. The xylanase from T. thermosulfurigenes EM1 was copurified with the S-layer protein during isolation of cell wall components. Since SLH domains of some structural proteins have been shown to anchor these proteins noncovalently to the cell envelope, we propose a common anchoring mechanism for the S-layer protein and exocellular enzymes via their SLH domains in the peptidoglycan-containing layer of T. thermosulfurigenes EM1.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s002030050694DOI Listing

Publication Analysis

Top Keywords

thermosulfurigenes em1
20
s-layer protein
16
cell wall
12
s-layer
9
thermoanaerobacterium thermosulfurigenes
8
cell envelope
8
exocellular enzymes
8
xylanase thermosulfurigenes
8
slh domains
8
cell
5

Similar Publications

SLH domains (for surface layer homology) are involved in the attachment of proteins to bacterial cell walls. The data presented here assign the conserved TRAE motif within SLH domains a key role for the binding. The charged amino acids arginine (R) or/and glutamic acid (E) were replaced via site-directed mutagenesis by different amino acids.

View Article and Find Full Text PDF

In Thermoanaerobacterium thermosulfurigenes EM1 S-layer homology domains do not attach to peptidoglycan.

J Bacteriol

August 1999

Abteilung Mikrobiologie, Fachbereich Biologie, Universität Rostock, D-18051 Rostock, Germany.

Three exocellular enzymes of Thermoanaerobacterium thermosulfurigenes EM1 possess a C-terminal triplicated sequence related to a domain of bacterial cell surface proteins (S-layer proteins). At least one copy of this sequence, named the SLH (for S-layer homology) domain, is also present at the N terminus of the S-layer protein of this bacterium. The hypothesis that SLH domains serve to anchor proteins to the cell surface was investigated by using the SLH domain-containing xylanase.

View Article and Find Full Text PDF

Thermoanaerobacterium thermosulfurigenes EM1 has a gram-positive type cell wall completely covered by a surface layer (S-layer) with hexagonal lattice symmetry. The components of the cell envelope were isolated, and the S-layer protein was purified and characterized. S-layer monomers assembled in vitro into sheets with the same hexagonal symmetry as in vivo.

View Article and Find Full Text PDF

The starch-degrading enzymes alpha-amylase and cyclodextrin glycosyltransferase (CGTase) are functionally and structurally closely related, with CGTases containing two additional domains (called D and E) compared to the three domains of alpha-amylases (A, B and C). Amino acid residue 196 (Thermoanaerobacterium thermosulfurigenes EM1 CGTase numbering) occupies a dominant position in the active-site cleft. All alpha-amylases studied have a small residue at this position (Gly, Leu, Ser, Thr or Val), in contrast to CGTases which have a more bulky aromatic residue (Tyr or Phe) at this position, which is highly conserved.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!