Thermoanaerobacterium thermosulfurigenes EM1 has a gram-positive type cell wall completely covered by a surface layer (S-layer) with hexagonal lattice symmetry. The components of the cell envelope were isolated, and the S-layer protein was purified and characterized. S-layer monomers assembled in vitro into sheets with the same hexagonal symmetry as in vivo. Monosaccharide analysis revealed that the S-layer is associated with fucose, rhamnose, mannosamine, glucosamine, galactose, and glucose. The N-terminal 31 amino acid residues of the S-layer protein showed significant similarity to SLH (S-layer homology) domains found in S-layer proteins of different bacteria and in the exocellular enzymes pullulanase, polygalacturonate hydrolase, and xylanase of T. thermosulfurigenes EM1. The xylanase from T. thermosulfurigenes EM1 was copurified with the S-layer protein during isolation of cell wall components. Since SLH domains of some structural proteins have been shown to anchor these proteins noncovalently to the cell envelope, we propose a common anchoring mechanism for the S-layer protein and exocellular enzymes via their SLH domains in the peptidoglycan-containing layer of T. thermosulfurigenes EM1.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s002030050694 | DOI Listing |
Arch Microbiol
May 2006
Institute of Biological Sciences, Division of Microbiology, University of Rostock, Albert-Einstein-Str. 3, 18051, Rostock, Germany.
SLH domains (for surface layer homology) are involved in the attachment of proteins to bacterial cell walls. The data presented here assign the conserved TRAE motif within SLH domains a key role for the binding. The charged amino acids arginine (R) or/and glutamic acid (E) were replaced via site-directed mutagenesis by different amino acids.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
March 2004
Japan Marine Science and Technology Center, 2-15 Natsushima, Yokosuka 237-0061, Japan.
A gamma-cyclodextrin glycosyltransferase (EC 2.4.1.
View Article and Find Full Text PDFJ Bacteriol
August 1999
Abteilung Mikrobiologie, Fachbereich Biologie, Universität Rostock, D-18051 Rostock, Germany.
Three exocellular enzymes of Thermoanaerobacterium thermosulfurigenes EM1 possess a C-terminal triplicated sequence related to a domain of bacterial cell surface proteins (S-layer proteins). At least one copy of this sequence, named the SLH (for S-layer homology) domain, is also present at the N terminus of the S-layer protein of this bacterium. The hypothesis that SLH domains serve to anchor proteins to the cell surface was investigated by using the SLH domain-containing xylanase.
View Article and Find Full Text PDFArch Microbiol
February 1999
Abteilung Mikrobiologie, Universtität Rostock, Germany.
Thermoanaerobacterium thermosulfurigenes EM1 has a gram-positive type cell wall completely covered by a surface layer (S-layer) with hexagonal lattice symmetry. The components of the cell envelope were isolated, and the S-layer protein was purified and characterized. S-layer monomers assembled in vitro into sheets with the same hexagonal symmetry as in vivo.
View Article and Find Full Text PDFThe starch-degrading enzymes alpha-amylase and cyclodextrin glycosyltransferase (CGTase) are functionally and structurally closely related, with CGTases containing two additional domains (called D and E) compared to the three domains of alpha-amylases (A, B and C). Amino acid residue 196 (Thermoanaerobacterium thermosulfurigenes EM1 CGTase numbering) occupies a dominant position in the active-site cleft. All alpha-amylases studied have a small residue at this position (Gly, Leu, Ser, Thr or Val), in contrast to CGTases which have a more bulky aromatic residue (Tyr or Phe) at this position, which is highly conserved.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!