IMP dehydrogenase (IMPDH) is an essential enzyme that catalyzes the first step unique to GTP synthesis. To provide a basis for the evaluation of IMPDH inhibitors as antimicrobial agents, we have expressed and characterized IMPDH from the pathogenic bacterium Streptococcus pyogenes. Our results show that the biochemical and kinetic characteristics of S. pyogenes IMPDH are similar to other bacterial IMPDH enzymes. However, the lack of sensitivity to mycophenolic acid and the Km for NAD (1180 microM) exemplify some of the differences between the bacterial and mammalian IMPDH enzymes, making it an attractive target for antimicrobial agents. To evaluate the basis for these differences, we determined the crystal structure of the bacterial enzyme at 1.9 A with substrate bound in the catalytic site. The structure was determined using selenomethionine-substituted protein and multiwavelength anomalous (MAD) analysis of data obtained with synchrotron radiation from the undulator beamline (19ID) of the Structural Biology Center at Argonne's Advanced Photon Source. S. pyogenes IMPDH is a tetramer with its four subunits related by a crystallographic 4-fold axis. The protein is composed of two domains: a TIM barrel domain that embodies the catalytic framework and a cystathione beta-synthase (CBS) dimer domain of so far unknown function. Using information provided by sequence alignments and the crystal structure, we prepared several site-specific mutants to examine the role of various active site regions in catalysis. These variants implicate the active site flap as an essential catalytic element and indicate there are significant differences in the catalytic environment of bacterial and mammalian IMPDH enzymes. Comparison of the structure of bacterial IMPDH with the known partial structures from eukaryotic organisms will provide an explanation of their distinct properties and contribute to the design of specific bacterial IMPDH inhibitors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi982858v | DOI Listing |
J Food Sci
January 2025
Department of Human Nutrition, Food, and Animal Sciences, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA.
Freezing extends the shelf life of foods but often leads to structural damage due to ice crystal formation, negatively impacting quality attributes. Oscillating magnetic field (OMF)-assisted supercooling has emerged as a potential technique to overcome these limitations by inhibiting ice nucleation and maintaining foods in a supercooled state. Despite its potential, the effectiveness and underlying mechanisms of OMF-assisted supercooling remain subjects of debate.
View Article and Find Full Text PDFJ Food Sci
January 2025
School of Life Sciences and Chemistry, Minnan Science and Technology College, Quanzhou, Fujian, China.
Polyphenols are known to interact with starch to form the V-type inclusion complex or the noninclusive complex. It is hypothesized that the addition of polyphenols could improve the properties of Chinese yam (Dioscorea opposita Thunb.) starch, and the properties of the complexes could be regulated by controlling the additive amount of polyphenols.
View Article and Find Full Text PDFChemMedChem
January 2025
Université de Montpellier: Universite de Montpellier, IBMM, Pôle Chimie Balard, Campus CNRS, 34093, Montpellier, FRANCE.
After more than 15 years of decline, the Malaria epidemy has increased again since 2017, reinforcing the need to identify drug candidates active on new targets involved in at least two biological stages of the Plasmodium life cycle. The SUB1 protease, which is essential for parasite egress in both hepatic and blood stages, would meet these criteria. We previously reported the structure-activity relationship analysis of α-ketoamide-containing inhibitors encompassing positions P4-P2'.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
KU Leuven, Materials engineering, Kasteelpark Arenberg 44 bus 2450, 3001 LEUVEN Belgium, LEUVEN, BELGIUM.
Traditional polymer solid electrolytes (PSEs) suffer from low Li conductivity, poor kinetics and safety concerns. Here, we present a novel porous MOF glass gelled polymer electrolyte (PMG-GPE) prepared via a top-down strategy, which features a unique three-dimensional interconnected graded-aperture structure for efficient ion transport. Comprehensive analyses, including time-of-flight secondary ion mass spectrometry (TOF-SIMS), Solid-state 7Li magic-angle-spinning nuclear magnetic resonance (MAS-NMR), Molecular Dynamics (MD) simulations, and electrochemical tests, quantify the pore structures, revealing their relationship with ion conductivity that increases and then decreases as macropore proportion rises.
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2025
Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
Fracture healing is a complex process during which the bone restores its structural and mechanical integrity. Collagen networks and minerals are the fundamental components to rebuild the bone matrix in callus. It has been recognized that bone quality could be impaired during aging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!