Generation of humanized mice susceptible to peptide-induced inflammatory heart disease.

Circulation

mgen Institute, Ontario Cancer Institute, and the Departments of Medical Biophysics and Immunology, University of Toronto, Ontario, Canada.

Published: April 1999

AI Article Synopsis

  • Dilated cardiomyopathy (DCM) can lead to sudden cardiac death, and there is a connection between certain human HLA alleles and chronic heart disease, but no clear experimental evidence linking human MHC class II molecules to myocarditis and DCM.
  • Researchers created special mice lacking CD4 and CD8 immune cells but transgenic for human CD4 and HLA-DQ6 to study autoimmune myocarditis; these mice developed the condition when immunized with heart muscle proteins, unlike standard transgenic mice.
  • The findings reveal that human MHC class II molecules and specific heart muscle peptides can trigger inflammatory heart disease, supporting the idea that human inflammatory cardiomyopathy may stem from organ-specific autoimmune responses, paving the

Article Abstract

Background: Dilated cardiomyopathy (DCM) is a major cause of sudden cardiac death. In certain mouse major histocompatibility complex (MHC) backgrounds, myocarditis and inflammatory cardiomyopathy can be triggered by immunization with heart muscle-specific proteins. Similarly, chronic heart disease in humans has been linked to certain HLA alleles, such as HLA-DQ6. However, there is no experimental evidence showing that human MHC class II molecules and peptides derived from human proteins are involved in the pathogenesis of myocarditis and DCM.

Methods And Results: We generated double CD4- and CD8-deficient mice transgenic for human CD4 (hCD4) and human HLA-DQ6 to specifically reconstitute the human CD4/DQ6 arm of the immune system in mice. Transgenic hCD4 and HLA-DQ6 expression rendered genetically resistant C57BL/6 mice susceptible to the induction of autoimmune myocarditis induced by immunization with cardiac myosin. Moreover, we identified heart-specific peptides derived from both mouse and human alpha-myosin heavy chains capable of inducing inflammatory heart disease in hCD4 and HLA-DQ6 double transgenic mice but not in hCD4 single transgenic littermates. The autoimmune inflammatory heart disease induced by the human heart muscle-specific peptide in hCD4 and HLA-DQ6 double transgenic mice shared functional and phenotypic features with the disease occurring in disease-susceptible nontransgenic mice.

Conclusions: Our data provide the first genetic and functional evidence that human MHC class II molecules and a human alpha-myosin heavy chain-derived peptide can cause inflammatory heart disease and suggest that human inflammatory cardiomyopathy can be caused by organ-specific autoimmunity. The humanized mice generated in this study will be an ideal animal model to further elucidate the pathogenesis of inflammatory heart disease and facilitate the development of rational treatment strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1161/01.cir.99.14.1885DOI Listing

Publication Analysis

Top Keywords

heart disease
24
inflammatory heart
20
hcd4 hla-dq6
12
human
10
humanized mice
8
mice susceptible
8
heart
8
inflammatory cardiomyopathy
8
heart muscle-specific
8
human mhc
8

Similar Publications

Cardiovascular diseases (CVDs) are the leading cause of mortality and morbidity globally. It is estimated that 17.9 million people died from CVDs in 2019, which represents 32 % of all deaths worldwide.

View Article and Find Full Text PDF

Prognostic Value of Myocardial CT-ECV in Severe Aortic Stenosis Requiring Aortic Valve Replacement: A Systematic Review and Meta-analysis.

Eur Heart J Cardiovasc Imaging

January 2025

Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy.

Aim: Computed tomography (CT)-derived extracellular volume fraction (ECV) is a non-invasive method to quantify myocardial fibrosis. Evaluating CT-ECV during aortic valve replacement (AVR) planning CT in severe aortic stenosis (AS) may aid prognostic stratification. This meta-analysis evaluated the prognostic significance of CT-ECV in severe AS necessitating AVR.

View Article and Find Full Text PDF

Introduction: Central nervous system (CNS) infections represent some of the most critical pediatric health challenges, characterized by high mortality rates and a notable risk of long-term complications. Despite their significance, standardized guidelines for endocrinological follow-up of CNS infection survivors are lacking, leading to reliance on the expertise of individual centers and clinicians.

Materials And Methods: Prospective monocentric observational study conducted at the Fondazione Policlinico Universitario Agostino Gemelli in Rome, Italy.

View Article and Find Full Text PDF

Objective: This study investigated the long-term health risks associated with occupational noise exposure. By using 9 years of health examination data from a major manufacturing company in Taiwan, this study compared the health indices of employees in noise-intensive and non-noise-intensive work environments.

Methods: A retrospective analysis of 6278 health examination reports spanning 9 years was conducted to compare 20 health indices among 166 employees evenly distributed between noise-intensive and non-noise-intensive workgroups.

View Article and Find Full Text PDF

Background And Objective: It is unclear whether variation in covert cerebrovascular disease prevalence is attributable to ethnic differences or to other factors. We aimed to examine the associations of country of residence with covert vascular brain injury (VBI) and cognitive dysfunction among Chinese adults residing in Canada and China.

Methods: This was a multisite cross-sectional study of Chinese adults aged 40-80 years in the Canadian Alliance for Healthy Hearts and Healthy Minds (CAHHM; January 1, 2014, to December 31, 2018) and Prospective Urban Rural Epidemiological-Mind (PURE-MIND; November 1, 2010, to July 31, 2015) cohorts living in Canada and China.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!