A chronic single-unit study of motor cortical activity was undertaken in two monkeys trained to perform a bimanually coordinated task. The hypothesis was tested that the supplementary motor area plays a specific role in coordinating the two hands for common goal-oriented actions. With this objective, a special search was made for neurons that might exhibit properties exclusively related to bimanual task performance. Monkeys learned to reach for and to pull open a spring-loaded drawer with one hand, while the other hand reached out to grasp food from the drawer recess. The two hands were precisely coordinated for achievement of this goal. Monkeys also performed, in separate blocks of trials, only the pulling or grasping movements, using the same hands as in the bimanual task. Task-related activity of 348 neurons from the supplementary motor area and 341 neurons from the primary motor area, each examined in the bimanual and in both unimanual tasks, was recorded in the two hemispheres. Most neurons from the supplementary motor area were recorded within its caudal microexcitable portion. Contrary to expectation, the proportion of neurons with activity patterns related exclusively to the bimanual task was small, but somewhat higher in the supplementary motor area (5%) than in the primary motor cortex (2%). Another group of neurons that were equally modulated during the bimanual as well as to both unimanual task components might also contribute in controlling bimanual actions. Such "task-dependent" rather than "effector-dependent" activity patterns were more common in neurons of the supplementary motor area (19%) than of the primary motor cortex (5%). Bilateral receptive fields were also more numerous among the supplementary motor area neurons. However, a large majority of neurons from primary and supplementary motor areas had activity profiles clearly related only to contralateral hand movements (65% in the primary motor and 51% in the supplementary motor area). A similar group of neurons showed an additional slight modulation with ipsilateral movements; they were equally common in the two areas (14% and 16%, respectively) and their significance for bimanual coordination is questionable. Summed activity profiles of all neurons recorded in the primary and supplementary motor areas of the same hemisphere were compared. The modulations of the three histograms, corresponding to the two unimanual and the bimanual tasks, were similar for the two motor areas, i.e. prominent with bimanual and contralateral movements and weak with ipsilateral movements. It is concluded that the supplementary motor area is likely to contribute to bimanual coordination, perhaps more than the primary motor cortex, but that it is not a defining function for the former cortical area. Instead, it is suggested that the supplementary motor area is part of a callosally interconnected and distributed network of frontal and parietal cortical areas that together orchestrate bimanual coordination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0306-4522(98)00348-0 | DOI Listing |
Microsyst Nanoeng
January 2025
Henry Samueli School of Engineering, University of California, Irvine, CA, USA.
In recent decades, electrokinetic handling of microparticles and biological cells found many applications ranging from biomedical diagnostics to microscale assembly. The integration of electrokinetic handling such as dielectrophoresis (DEP) greatly benefits microfluidic point-of-care systems as many modern assays require cell handling. Compared to traditional pump-driven microfluidics, typically used for DEP applications, centrifugal CD microfluidics provides the ability to consolidate various liquid handling tasks in self-contained discs under the control of a single motor.
View Article and Find Full Text PDFJ Integr Neurosci
January 2025
Department of Physical Therapy, Hangzhou Geriatric Hospital, 310022 Hangzhou, Zhejiang, China.
Background: Observation, execution, and imitation of target actions based on mirror neuron network (MNN) have become common physiotherapy strategies. Electrical stimulation (ES) is a common intervention to improve muscle strength and motor control in rehabilitation treatments. It is possible to enhance MNN's activation by combining motor execution (ME) and motor imitation (MI) with ES simultaneously.
View Article and Find Full Text PDFJ Neurodev Disord
January 2025
Department of Radiology, The First Affiliated Hospital of Sun Yat-sen University, No 58 Zhongshan 2nd Road, Guangzhou, 510080, China.
Background: Spinal muscular atrophy (SMA) is caused by reduced expression of survival motor neuron (SMN) protein. Previous studies indicated SMA causes not only lower motor neuron degeneration but also extensive brain involvement. This study aimed to investigate the changes of brain white matter and structural network using diffusion tensor imaging (DTI) in children with type 2 and 3 SMA.
View Article and Find Full Text PDFBehav Sci (Basel)
January 2025
School of Psychology, Northeast Normal University, Changchun 130024, China.
This study investigated the cognitive and neural mechanisms of exact and approximate arithmetic using fNIRS technology during natural calculation processes (i.e., the production paradigm).
View Article and Find Full Text PDFBrain Sci
December 2024
Department of Military Medical Psychology, Air Force Medical University, Xi'an 710032, China.
Motor imagery includes visual imagery and kinesthetic imagery, which are two strategies that exist for mental rotation and are currently widely studied. However, different mental rotation tests can lead to different strategic performances. There are also many research results where two different strategies appear simultaneously under the same task.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!