The olfactory bulb is a limbic paleocortex which receives monosynaptic sensory afferents from the olfactory mucosa, and a strong direct cholinergic input from the basal forebrain. This review focuses on the rat olfactory bulb as a suitable model to study cholinergic involvements in cortical processing, during development, adulthood and aging. Anatomical and biochemical data show that cholinergic influences upon the bulbar neuronal network are exerted through several types of target cells and receptors (muscarinic and nicotinic). Functional data indicate that cholinergic afferents to the olfactory bulb are involved in local events related to olfactory learning. Neurodegenerative disorders such as Alzheimer's disease involve early olfactory deficits and typical histopathological lesions in the olfactory bulb. In summary, with its exclusively extrinsic cholinergic innervation and direct sensory input, the rat olfactory bulb offers the opportunity to study the cellular and molecular mechanisms of cholinergic influences on cortical processing, in both normal and pathological conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0736-5748(98)00087-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!