A convenient functional assay of the multidrug resistance (MDR) pump is useful for the diagnosis of MDR-1 cancers and the quantitative determination of the potency of inhibitors of the pump. Calcein-AM, a substrate of the MDR pump, was used to determine the concentration of SDZ PSC833 needed to completely inhibit the pump in CEM/VLB100 drug-resistant cells. The initial rates (in percent) for calcein retention by these MDR-1 cells were used to calculate values for the percent initial efflux of calcein-AM through the MDR pump in the presence of the inhibitors PSC833, cyclosporinA, and dexniguldipine. The percent efflux values at 250 and 60 nM calcein-AM were used to calculate the required concentration of each inhibitor to produce half-inhibition (I50) of initial efflux through the pump. These results are consistent with a noncompetitive inhibition of the MDR pump by each of the three inhibitors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/bbrc.1999.0475 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
() infections are increasingly challenging due to their propensity to form biofilms and low outer membrane permeability, especially in chronically infected patients with thick mucus. exhibits multiple drug resistance mechanisms, making it one of the most significant global public health threats. In this study, we found that moxifloxacin (MXC) and antibacterial peptides (ε-poly-l-lysine, ε-PLL) exhibited a synergistic effect against multidrug-resistant (MDR-).
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Microbiology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia.
The widespread use of disinfectants and antiseptics has led to the emergence of nosocomial pathogens that are less sensitive to these agents, which in combination with multidrug resistance (MDR) can pose a significant epidemiologic risk. We investigated the susceptibility of nosocomial , , , and to a 0.05% chlorhexidine (CHX) solution and a biocidal S7 composite solution based on CHX (0.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Biological Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, 90128 Palermo, Italy.
The MCF-7R breast cancer cell line, developed by treating the parental MCF-7 cells with increasing doses of doxorubicin, serves as a model for studying acquired multidrug resistance (MDR). MDR is a major challenge in cancer therapy, often driven by overexpression of the efflux pump P-glycoprotein (P-gp) and epigenetic modifications. While many P-gp inhibitors show promise in vitro, their nonspecific effects on the efflux pump limit in vivo application.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa.
The progressive development of resistance in to almost all available antibiotics has made it crucial to develop novel approaches to tackling multi-drug resistance (MDR). One of the primary causes of antibiotic resistance is the over-expression of the MtrCDE efflux pump protein, making this protein a vital target for fighting against antimicrobial resistance (AMR) in . This study was aimed at evaluating the potential MtrCDE efflux pump inhibitors (EPIs) and their stability in treating gonorrhoea infection.
View Article and Find Full Text PDFMikrobiyol Bul
October 2024
İnönü University Faculty of Medicine, Deparment of Medical Microbiology, Malatya, Türkiye.
The increasing antibiotic resistance in Pseudomonas aeruginosa, responsible for both community-acquired and hospital-acquired infections, is of global significance. The primary mechanisms contributing to resistance development in P.aeruginosa include the increased activity of efflux pumps, decreased permeability of outer membrane porins and the production of carbapenemases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!