The PKHD1 (polycystic kidney and hepatic disease 1) gene responsible for autosomal recessive polycystic kidney disease has been mapped to 6p21.1-p12 to an approximately 1-cM interval flanked by the markers D6S1714/D6S243 and D6S1024. We have developed a sequence-ready BAC/PAC-based contig map of this region as the next step for the positional cloning of PKHD1. This contig comprising 52 clones spanning approximately 1 Mb was established by content mapping of 44 BAC/PAC-end-derived STSs, 3 known genetic markers, 5 YAC-end-derived STSs, 3 random STSs, 1 previously mapped gene, and 1 EST. The average depth per marker is 6.3 clones, and the average STS density is 20 kb. The genomic clone overlaps were confirmed by restriction fragment fingerprint analysis. A high-resolution BAC/PAC-based contig map is essential to the ultimate goal of identifying the PKHD1 gene.

Download full-text PDF

Source
http://dx.doi.org/10.1006/geno.1999.5777DOI Listing

Publication Analysis

Top Keywords

polycystic kidney
12
autosomal recessive
8
recessive polycystic
8
kidney disease
8
disease gene
8
bac/pac-based contig
8
contig map
8
1-mb bac/pac-based
4
bac/pac-based physical
4
physical map
4

Similar Publications

Epigenetics in autosomal dominant polycystic kidney disease.

Biochim Biophys Acta Mol Basis Dis

January 2025

Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China; Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, USA. Electronic address:

Autosomal dominant polycystic kidney disease (ADPKD) is the fourth leading cause of end-stage renal disease, contributing substantially to patient morbidity, mortality, and healthcare system strain. Emerging research highlights a pivotal role of epigenetics in ADPKD's pathophysiology, where mechanisms like DNA methylation, histone modifications, and non-coding RNA regulation significantly impact disease onset and progression. These epigenetic factors influence gene expression and regulate key processes involved in cyst formation and expansion, fibrosis, and inflammatory infiltration, thus accelerating ADPKD progression.

View Article and Find Full Text PDF

Objectives: Cardiovascular complications are well known in humans with autosomal dominant polycystic kidney disease (PKD), but limited data exist for cats. This study aimed to assess echocardiographic changes, cardiac troponin I (cTnI) levels and systolic blood pressure (SBP) in Persian cats with PKD to detect early cardiac abnormalities.

Methods: In total, 52 Persian and mixed-Persian cats were enrolled, with 26 cats in the control group and 26 diagnosed with PKD via ultrasound due to the unavailability of genetic testing.

View Article and Find Full Text PDF

Background: Despite of long-lasting tolvaptan treatment, individual renal outcomes are unclear in autosomal dominant polycystic kidney disease (ADPKD). This post-hoc analysis of the TEMPO 3:4 trial aimed to evaluate the predictability of estimated height-adjusted total kidney volume growth rate (eHTKV-α) on renal outcomes.

Methods: In TEMPO 3:4, 1445 patients with ADPKD were randomised to tolvaptan or placebo for 3 years.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!