Solar cycle variability, ozone, and climate.

Science

NASA Goddard Institute for Space Studies (GISS) and Center for Climate Systems Research, Columbia University, 2880 Broadway, New York, NY 10025, USA. E. O. Hulburt Center for Space Research, Naval Research Laboratory, Washington, DC 20375, USA.

Published: April 1999

Results from a global climate model including an interactive parameterization of stratospheric chemistry show how upper stratospheric ozone changes may amplify observed, 11-year solar cycle irradiance changes to affect climate. In the model, circulation changes initially induced in the stratosphere subsequently penetrate into the troposphere, demonstrating the importance of the dynamical coupling between the stratosphere and troposphere. The model reproduces many observed 11-year oscillations, including the relatively long record of geopotential height variations; hence, it implies that these oscillations are likely driven, at least in part, by solar variability.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.284.5412.305DOI Listing

Publication Analysis

Top Keywords

solar cycle
8
climate model
8
observed 11-year
8
cycle variability
4
variability ozone
4
ozone climate
4
climate global
4
global climate
4
model including
4
including interactive
4

Similar Publications

Resolving the Ambiguity of Thermal Reversion in a Nonconjugated Monocyclic Diene-Based Photoswitch for Rechargeable Solar Thermal Batteries.

J Phys Chem A

January 2025

Laboratory of Advanced Computation and Theory for Materials and Chemistry, Department of Chemistry, National Institute of Technology Warangal (NITW), Warangal, Telangana 506004, India.

We report nonconjugated monocyclic dienes (nCMDs) as unique photoswitchable molecules that hold promise for harvesting substantial solar energy and storing it for extended durations. Herein, cyclohepta-1,4-diene and its N-heterocyclic analogue have been considered as prototypical models for investigating photoswitching behavior in nCMDs. Initially, the nonradiative deactivation pathway of nCMD from the low-lying excited state to the [2 + 2]-cycloadduct has been evaluated.

View Article and Find Full Text PDF

While CuS/TiO₂ has been previously synthesized and employed in a limited number of photodegradation studies, the current study investigated its effectiveness for TC degradation under UV-visible light irradiation. CuS is known to be a nontoxic, environmentally friendly material; hence, it has great potential as an alternative to CdS and CdSe, which are used conventionally as sensitizers. In this work, the CuS/TiO₂ photocatalysts achieved a maximum 95 % removal of TC at an initial concentration of 20 ppm, confirming the good utilization of active sites.

View Article and Find Full Text PDF

Washable Superhydrophobic Cotton Fabric with Photothermal Self-Healing Performance Based on Nanocrystal-MXene.

ACS Appl Mater Interfaces

January 2025

Colour Science and Textile Chemistry Research Center, College of Textiles and Clothing, Qingdao University, Qingdao, Shandong 266071, China.

Superhydrophobic fabrics suffer from being commonly penetrated by moisture after laundering, seriously deteriorating their water repellency after air drying. Numerous researchers have successfully recovered superhydrophobicity by drying in fluid ovens; however, high energy consumption and equipment dependence limit practical applications. Herein, the superhydrophobic photothermal self-healing cotton fabric (SPS cotton fabric) was fabricated by depositing a composite layer of cellulose nanocrystal-MXene (C-MXene) and polyacrylate (PA) coatings on the cotton cloth.

View Article and Find Full Text PDF

Despite the potential to significantly enhance the economic viability of biomass-based platforms through the selective conversion of glycerol to 1,3-dihydroxyacetone (DHA), a formidable challenge persists in simultaneously achieving high catalytic activity and stability along this reaction pathway. Herein, we have devised a strategic approach to manipulate the interfacial integration within composite catalysts to address the performance trade-off. Through the modulation of the composite process involving a bio-templated porous ZSM-5 zeolite platform (bZ) and an Au/CuZnO catalyst, three distinct interfacial bonding modes were achieved: physical milling, encapsulation by zeolite, and growth on zeolite.

View Article and Find Full Text PDF

Enhanced Sodium Storage and Thermal Safety of NaNiFeMnO Cathode via Incorporation of TiN and WO.

ACS Appl Mater Interfaces

January 2025

College of Physics and Energy, Fujian Provincial Solar Energy Conversion and Energy Storage Engineering Technology Research Center, Fujian Normal University, Fuzhou 350117, China.

This study proposes an efficient, cost-effective, and industrially scalable electrode modulation strategy, which involves directly adding a small amount of high thermal and high conductance TiN and well interface compatible WO to NaNiFeMnO (NaNFMO-TW) cathode slurry, to effectively reduce electrode polarization and interface side reactions, reduce the Ohmic heat and polarization heat of the battery, and ultimately to significantly improve the sodium-ion storage and thermal safety performance of the battery. At room temperature (RT) and 1C rate, the modified NaNFMO-TW electrode exhibits a reversible capacity of ∼95 mAh g after 300 cycles, with a capacity retention rate of 82.6%, being higher than the 50.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!