To explore the nature of the representation space of 3D objects, we studied human performance in forced-choice categorization of objects composed of four geon-like parts emanating from a common center. Two categories were defined by prototypical objects, distinguished by qualitative properties of their parts (bulging vs waist-like limbs). Subjects were trained to discriminate between the two prototypes (shown briefly, from a number of viewpoints, in stereo) in a 1-interval forced-choice task, until they reached a 90% correct-response performance level. After training, in the first experiment, 11 subjects were tested on shapes obtained by varying the prototypical parameters both orthogonally (ORTHO) and in parallel (PARA) to the line connecting the prototypes in the parameter space. For the eight subjects who performed above chance, the error rate increased with the ORTHO parameter-space displacement between the stimulus and the corresponding prototype; the effect of the PARA displacement was weaker. Thus, the parameter-space location of the stimuli mattered more than the qualitative contrasts, which were always present. To find out whether both prototypes or just the nearest one to the test shape influenced the decision, in the second experiment we varied the similarity between the categories. Specifically, in the test stage trials the distance between the two prototypes could assume one of three values (FAR, INTERMEDIATE, and NEAR). For the 13 subjects who performed above chance, the error rate (on physically identical stimuli) in the NEAR condition was higher than in the other two conditions. The results of the two experiments contradict the prediction of theories that postulate exclusive reliance on qualitative contrasts, and support the notion of a representation space in which distances to more than one reference point or prototype are encoded (Edelman, 1998).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1163/156856899x00067 | DOI Listing |
J Chem Phys
December 2024
Department of Chemistry, University of the Pacific, Stockton, California 95204, USA.
Utilizing the sparsity of the electronic structure problem, fragmentation methods have been researched for decades with great success, pushing the limits of ab initio quantum chemistry ever further. Recently, this set of methods has been expanded to include a fundamentally different approach called excitonic renormalization, providing promising initial results. It builds a supersystem Hamiltonian in a second-quantized-like representation from transition-density tensors of isolated fragments, contracted with biorthogonalized molecular integrals.
View Article and Find Full Text PDFJ Am Med Inform Assoc
January 2025
Kennewick, WA 99338, United States.
Objective: This study evaluates the utility of word embeddings, generated by large language models (LLMs), for medical diagnosis by comparing the semantic proximity of symptoms to their eponymic disease embedding ("eponymic condition") and the mean of all symptom embeddings associated with a disease ("ensemble mean").
Materials And Methods: Symptom data for 5 diagnostically challenging pediatric diseases-CHARGE syndrome, Cowden disease, POEMS syndrome, Rheumatic fever, and Tuberous sclerosis-were collected from PubMed. Using the Ada-002 embedding model, disease names and symptoms were translated into vector representations in a high-dimensional space.
Alzheimers Dement
December 2024
Department of Neurology, Mayo Clinic, Rochester, MN, USA.
Background: Many proposed clinical decision support systems (CDSS) require multiple disparate data elements as input, which makes implementation difficult, and furthermore have a black-box nature leading to low interpretability. Fluorodeoxyglucose Positron Emission Tomography (FDG-PET) is an established modality for the diagnosis of dementia, and a CDSS that uses only an FDG-PET image to produce a reliable and understandable result would ease both of these challenges to clinical application.
Method: A deep variational autoencoder (VAE) was used to extract a latent representation of each image through prior training from FDG-PET brain images (n=2000).
Alzheimers Dement
December 2024
Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
Background: Ethnic and racial diversity in clinical research is critical for developing generalizable treatments and caregiving strategies. Barriers to participation among persons from underrepresented groups (URG) are systemic in clinical research. To increase URG research participation, we designed a community-based data collection site where study participants complete full research visits.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States.
Least-squares tensor hypercontraction (LS-THC) has received some attention in recent years as an approach to reduce the significant computational costs of wave function-based methods in quantum chemistry. However, previous work has demonstrated that LS-THC factorization performs disproportionately worse in the description of wave function components (e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!