Learning a new motor skill requires an alteration in the spatiotemporal pattern of muscle activation. Motor areas of cerebral neocortex are thought to be involved in this type of learning, possibly by functional reorganization of cortical connections. Here we show that skill learning is accompanied by changes in the strength of connections within adult rat primary motor cortex (M1). Rats were trained for three or five days in a skilled reaching task with one forelimb, after which slices of motor cortex were examined to determine the effect of training on the strength of horizontal intracortical connections in layer II/III. The amplitude of field potentials in the forelimb region contralateral to the trained limb was significantly increased relative to the opposite 'untrained' hemisphere. No differences were seen in the hindlimb region. Moreover, the amount of long-term potentiation (LTP) that could be induced in trained M1 was less than in controls, suggesting that the effect of training was at least partly due to LTP-like mechanisms. These data represent the first direct evidence that plasticity of intracortical connections is associated with learning a new motor skill.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/678 | DOI Listing |
J Neurosci
December 2024
Department of Psychology, University of Virginia, Charlottesville VA 22904, USA
Sensory experience during development has lasting effects on perception and neural processing. Exposing juvenile animals to artificial stimuli influences the tuning and functional organization of the auditory cortex, but less is known about how the rich acoustical environments experienced by vocal communicators affect the processing of complex vocalizations. Here, we show that in zebra finches (), a colonial-breeding songbird species, exposure to a naturalistic social-acoustical environment during development has a profound impact on auditory perceptual behavior and on cortical-level auditory responses to conspecific song.
View Article and Find Full Text PDFJ Neurosci
December 2024
Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
The neurotransmitter dopamine (DA) has a multifaceted role in healthy and disordered brains through its action on multiple subtypes of dopaminergic receptors. How modulation of these receptors influences learning and motivation by altering intrinsic brain-wide networks remains unclear. Here we performed parallel behavioral and resting-state functional MRI experiments after administration of two different DA receptor antagonists in male and female macaque monkeys.
View Article and Find Full Text PDFNeurosci Biobehav Rev
December 2024
Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, R3E 0W2, Canada. Electronic address:
The paraventricular nucleus of the thalamus (PVT) is generating interest because of evidence establishing a role for this midline thalamic nucleus in behavior. Early tracing studies demonstrated that afferent fibers from the PVT and limbic cortex converge with dopamine fibers within subcompartments of the ventral striatum. Subsequent tracing studies expanded on these observations by establishing that the PVT provides a dense projection to a continuum of striatal-like regions that include the nucleus accumbens and the extended amygdala.
View Article and Find Full Text PDFClin Neurophysiol
December 2024
Department of Neonatology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, the Netherlands. Electronic address:
Objective: To systematically review the literature on the associations between electroencephalogram (EEG) and brain magnetic resonance imaging (MRI) measures in preterm infants (gestational age < 37 weeks).
Methods: A comprehensive search was performed in PubMed and EMBASE databases up to February 12th, 2024. Non-relevant studies were eliminated following the PRISMA guidelines.
Schizophr Bull
December 2024
Department of Psychiatry, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China.
Background And Hypothesis: Respective abnormal structural connectivity (SC) and functional connectivity (FC) have been reported in individuals with schizophrenia. However, transmodal associations between SC and FC following antipsychotic treatment, especially in female schizophrenia, remain unclear. We hypothesized that increased SC-FC coupling may be found in female schizophrenia, and could be normalized after antipsychotic treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!