Arachidonic acid modulates both electrical and biochemical properties of membrane proteins involved in cellular signaling. In Xenopus laevis oocytes expressing the excitatory amino acid transporter EAAT4, physiologically relevant concentrations of arachidonic acid increase the amplitude of the substrate-activated current by roughly twofold at -60 mV. This stimulation is not attributable to the modulation of either substrate/ion cotransport or the ligand-gated chloride current, the major conductance associated with this carrier. Ion-substitution experiments reveal that arachidonic acid stimulates a proton-selective conductance. The effect does not require metabolism of arachidonic acid and is not blocked by inhibitors of endogenous oocyte ion-exchangers. This proton conductance expands the complex repertoire of the ligand-gated channel properties associated with EAAT4.

Download full-text PDF

Source
http://dx.doi.org/10.1038/355DOI Listing

Publication Analysis

Top Keywords

arachidonic acid
20
transporter eaat4
8
arachidonic
5
acid
5
acid elicits
4
elicits substrate-gated
4
substrate-gated proton
4
proton current
4
current associated
4
associated glutamate
4

Similar Publications

Fatty Acids in Cnidaria: Distribution and Specific Functions.

Mar Drugs

January 2025

A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, ul. Palchevskogo 17, Vladivostok 690041, Russia.

The phylum Cnidaria comprises five main classes-Hydrozoa, Scyphozoa, Hexacorallia, Octocorallia and Cubozoa-that include such widely distributed and well-known animals as hard and soft corals, sea anemones, sea pens, gorgonians, hydroids, and jellyfish. Cnidarians play a very important role in marine ecosystems. The composition of their fatty acids (FAs) depends on food (plankton and particulate organic matter), symbiotic photosynthetic dinoflagellates and bacteria, and de novo biosynthesis in host tissues.

View Article and Find Full Text PDF

Platelet Function Assay Using Dielectric Blood Coagulometry.

Anal Chem

January 2025

Department of Anesthesiology, Tokyo Medical and Dental University, Graduate School of Medical and Dental Sciences, 1-5-45 Yushima, Bunkyo-ku 113-8510, Tokyo, Japan.

The hemostatic function of platelets is complementary to blood coagulation. However, traditional platelet function tests have primarily focused on measuring platelet aggregation, reducing their clinical effectiveness for antiplatelet drug monitoring. To address this limitation, we propose a new test principle that evaluates platelet function and the effects of antiplatelet drugs through blood coagulation reactions.

View Article and Find Full Text PDF

Glutathione-scavenging natural-derived ferroptotic nano-amplifiers strengthen tumor therapy through aggravating iron overload and lipid peroxidation.

J Control Release

January 2025

State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China. Electronic address:

Nanomedicine-driven ferroptosis has emerged as a promising tumor treatment strategy through delivering exogenous iron and aggravating the lethal accumulation of lipid peroxides (LPO). However, the compensatory mechanisms of ferroptosis defense systems in cancer cells compromise the therapeutic efficacy and lead to potential side effects. Herein, a highly effective ferroptotic nano-amplifier is designed to synergistically promote ferroptosis via increasing intracellular labile iron, exacerbating lipid peroxidation and overcoming the defense system.

View Article and Find Full Text PDF

Multi-omics analysis reveals toxicity and gut-liver axis disruption induced by polychlorinated biphenyls exposure in Yellowfin Seabream (Acanthopagrus latus).

J Hazard Mater

January 2025

School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai, 519082, China; Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai 519082, China. Electronic address:

Polychlorinated biphenyls (PCBs) are persistent organic pollutants known for their environmental persistence and bioaccumulation, posing significant health risks. This study examines the toxic effects of a representative PCBs (Aroclor 1254) on yellowfin seabream (Acanthopagrus latus) exposured for 30 days through a multi-omics approach. Histopathological examinations revealed structural damage to the intestinal structure and hepatic steatosis, along with elevated serum lipopolysaccharide levels, indicating compromised intestinal barrier integrity and liver inflammation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!