Differential expression of muscarinic subtype mRNAs after exposure to neurotoxic pesticides.

Neurobiol Aging

Department of Environmental Toxicology, Uppsala University, Sweden.

Published: May 1999

We have recently reported an increase in the density of muscarinic cholinergic receptors in mice neonatally exposed to a persistent environmental agent, dichlorodiphenyltrichloroethane (DDT), and a subsequent exposure as adults to nonpersistent toxicants, such as bioallethrin or paraoxon. Here we have examined the effects of an exposure like this on muscarinic receptor mRNA expression. Ten-day-old Naval Medical Research Institute mice received a single oral dose of DDT (0.5 mg/kg body weight). When aged 5 months, they received bioallethrin (0.7 mg/kg body weight per day for 7 days) or paraoxon (1.4 mg/kg body weight every second day for 7 days). mRNA expression of subtypes m1, m3, and m4 was studied in 7-month-old animals. Changes could only be discovered in the DDT-bioallethrin treated mice, where expression of subtype m4 was elevated in cortex and caudate putamen. Moreover, the expression pattern of the subtypes m1, m3, and m4 in mouse brains was found to be very similar to that seen in rats, except for slight differences in the pyramidal cell layer of the hippocampus, where the outermost part of the CA3 region did not show any m4 hybridization. The present study indicates that the earlier observed increase in muscarinic receptor density in mice exposed as neonates to DDT and as adults to bioallethrin can be attributed to changes in the expression of m4.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0197-4580(98)00095-5DOI Listing

Publication Analysis

Top Keywords

mg/kg body
12
body weight
12
muscarinic receptor
8
mrna expression
8
day days
8
expression
5
differential expression
4
muscarinic
4
expression muscarinic
4
muscarinic subtype
4

Similar Publications

Background: Folpet is a nonspecific sulfonamide fungicide widely used to protect crops from mildew. However, the in vivo effects of folpet on glucose metabolism homeostasis, gut microbiota, and abundance of drug resistance genes remain unknown. The purpose of this study was to assess the effects of the pesticide, folpet, on glucose metabolism homeostasis, and folpet-induced changes in the intestinal microbiota and resistance genes in mice.

View Article and Find Full Text PDF

Glutaraldehyde (GLU) is mainly used in medicine by healthcare workers during infection control as a chemical disinfectant. It has been linked to numerous health hazards that range from asthma to irritation of the eye to contact dermatitis. Citrullus colocynthis (C.

View Article and Find Full Text PDF

[Comparison of the effects of tenofovir amibufenamide and tenofovir alafenamide on lipid metabolism in the body].

Zhonghua Gan Zang Bing Za Zhi

December 2024

Department of Infectious Diseases and Hepatology, Yichun People's Hospital, Yichun336000, China.

To compare the effectiveness and safety profile of tenofovir amibufenamide (TMF) and tenofovir alafenamide (TAF), especially the effects on lipid metabolism in the treatment of chronic hepatitis B. A retrospective study was conducted on the virological response rate, biochemical response rate, renal function indicators, and lipid metabolism status of 159 cases with chronic hepatitis B (72 cases with TMF and 87 cases with TAF) after 48 weeks of antiviral treatment. The effects of the two drugs on lipid metabolism were further explored through cell and animal experiments.

View Article and Find Full Text PDF

Alginate oligosaccharides (AOS) have gained attention for their capacity to regulate human health as prebiotics. Osteosarcopenia is a progressive disease of the musculoskeletal system and result in heavy burden of patients. Studies suggest that gut microbiota is involved in the pathogenesis of osteosarcopenia, whether AOS can improve the symptoms of osteosarcopenia by modulating gut microbiota remains to be elucidated.

View Article and Find Full Text PDF

Bisphenol A (BPA), an endocrine disruptor, is linked to cancer progression in estrogen-responsive tissues, but its role in promoting colorectal cancer (CRC) progression in the context of obesity remains underexplored. This study examines BPA's influence on CRC in obese Sprague-Dawley rats using network toxicology and experimental models. Computational analysis using the Database for Annotation, Visualization, and Integrated Discovery identified pathways such as "CRC" and "chemical carcinogenesis-receptor activation", implicating the PI3K-AKT pathway in IL-1 beta upregulation and BPA's role in CRC during obesity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!