Vanadate and peroxovanadate (pV), potent inhibitors of tyrosine phosphatases, mimic several of the metabolic actions of insulin. Here we compare the mechanisms for the anti-lipolytic action of insulin, vanadate and pV in rat adipocytes. Vanadate (5 mM) and pV (0.01 mM) inhibited lipolysis induced by 0.01-1 microM isoprenaline, vanadate being more and pV less efficient than insulin (1 nM). A loss of anti-lipolytic effect of pV was observed by increasing the concentration of isoprenaline and/or pV. pV induced tyrosine phosphorylation of the insulin receptor and insulin receptor substrate-1 to a greater extent than insulin, whereas vanadate affected these components little if at all. In addition, only a higher concentration (0.1 mM) of pV induced the tyrosine phosphorylation of p85, the 85 kDa regulatory subunit of phosphoinositide 3-kinase (PI-3K). Vanadate activated PI-3K-independent (in the presence of 10 nM isoprenaline) and PI-3K-dependent (in the presence of 100 nM isoprenaline) anti-lipolytic pathways, both of which were found to be independent of phosphodiesterase type 3B (PDE3B). pV (0.01 mM), like insulin, activated PI-3K- and PDE3B-dependent pathways. However, the anti-lipolytic pathway of 0.1 mM pV did not seem to require insulin receptor substrate-1-associated PI-3K and was found to be partly independent of PDE3B. Vanadate and pV (only at 0.01 mM), like insulin, decreased the isoprenaline-induced activation of cAMP-dependent protein kinase. Overall, these results underline the complexity and the diversity in the mechanisms that regulate lipolysis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1220156 | PMC |
J Trace Elem Med Biol
May 2024
Institute of General and Physical Chemistry, Studentski trg 12, 11158 Belgrade, Serbia.
Background: Fungi absorb and solubilize a broad spectrum of heavy metals such as vanadium (V), which makes them a main route of its entry into the biosphere. V as vanadate (V) is a potential medical agent due to its many metabolic actions such as interaction with phosphates in the cell, and especially its insulin-mimetic activity. Antidiabetic activity of V-enriched fungi has been studied in recent years, but the biological and chemical bases of vanadium action and status in fungi in general are poorly understood, with almost no information on edible fungi.
View Article and Find Full Text PDFInt J Mol Sci
October 2023
LAQV, REQUIMTE, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
Over the last four decades, vanadium compounds have been extensively studied as potential antidiabetic drugs. With the present review, we aim at presenting a general overview of the most promising compounds and the main results obtained with in vivo studies, reported from 1899-2023. The chemistry of vanadium is explored, discussing the importance of the structure and biochemistry of vanadate and the impact of its similarity with phosphate on the antidiabetic effect.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Res
January 2024
Department of Nutrition, University of California Davis, Davis, CA, USA; Comprehensive Cancer Center, University of California Davis, Sacramento, CA, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, University of California Davis, Sacramento, CA, USA. Electronic address:
Glomerular podocytes are instrumental for the barrier function of the kidney, and podocyte injury contributes to proteinuria and the deterioration of renal function. Protein tyrosine phosphatase 1B (PTP1B) is an established metabolic regulator, and the inactivation of this phosphatase mitigates podocyte injury. However, there is a paucity of data regarding the substrates that mediate PTP1B actions in podocytes.
View Article and Find Full Text PDFCurr Issues Mol Biol
July 2023
Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China.
Vanadium is a well-known essential trace element, which usually exists in oxidation states in the form of a vanadate cation intracellularly. The pharmacological study of vanadium began with the discovery of its unexpected inhibitory effect on ATPase. Thereafter, its protective effects on β cells and its ability in glucose metabolism regulation were observed from the vanadium compound, leading to the application of vanadium compounds in clinical trials for curing diabetes.
View Article and Find Full Text PDFSmall
October 2022
State Key Laboratory of Luminescent Materials and Devices, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China.
The therapeutic application of vanadium compounds is plagued by their poor bioavailability and potential adverse effects. Herein, 1 nm polyoxovanadate (POV) clusters are functionalized with alkyl chains of various lengths and studied for the effect of surface engineering on their preclinical pharmacokinetics and typical insulin-sensitizing activity. The concentrations of surface engineered POVs in plasma, urine, and feces are monitored after a single administration to rats.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!