Absolute Line Intensities for the nu6 Band of H2O2.

J Mol Spectrosc

Physikalisch-Chemisches Institut, Justus Liebig Universitaet, Heinrich-Buff-Ring 58, Giessen, D-35392, Germany

Published: May 1999

The purpose of this work was to obtain reliable absolute intensities for the nu6 band of H2O2. It was undertaken because strong discrepancies exist between the different nu6 band intensities which are presently available in the literature (A. Perrin, A. Valentin, J.-M. Flaud, C. Camy-Peyret, L. Schriver, A. Schriver, and P. Arcas, J. Mol. Spectrosc. 1995. 171, 358), (R. May, J. Quant. Radiat. Transfer 1991. 45, 267), and (R. L. Sams, personal communication). The method which was chosen in the present work was to measure simultaneously the far-infrared absorptions and the nu6 absorptions of H2O2. Consequently, Fourier transform spectra of H2O2 were recorded at Giessen in a spectral range (370-1270 cm-1) which covers both the R branch of the torsion-rotation band and the P branch of the nu6 band which appear at low and high wavenumbers, respectively. From the low wavenumber data, the partial pressure of H2O2 present in the cell during the recording of the spectra was determined by calibrating the observed absorptions in the torsion-rotation band with intensities computed using the permanent H2O2 dipole moment measured by Stark effect (A. Perrin, J.-M. Flaud, C. Camy-Peyret, R. Schermaul, M. Winnewisser, J.-Y. Mandin, V. Dana, M. Badaoui, and J. Koput, J. Mol. Spectrosc. 1996. 176, 287-296) and [E. A. Cohen and H. M. Pickett, J. Mol. Spectrosc. 1981. 87, 582-583). In the high frequency range, this value of the partial pressure of H2O2 was used to measure absolute line intensities in the nu6 band. Finally, the line intensities in the nu6 band were fitted using the theoretical methods described in detail in our previous works. Using these new results on line intensities together with the line position parameters that we obtained previously, a new synthetic spectra of the nu6 band was generated, leading to a total band intensity of 0.185 x 10(-16) cm-1/(molecule.cm-2) at 296 K. It has to be pointed out that the new line intensities agree to within the experimental uncertainties with the individual line intensity measurements performed previously by May and by Sams. Copyright 1999 Academic Press.

Download full-text PDF

Source
http://dx.doi.org/10.1006/jmsp.1999.7807DOI Listing

Publication Analysis

Top Keywords

nu6 band
28
intensities nu6
16
absolute intensities
12
mol spectrosc
12
band
10
nu6
8
band h2o2
8
band intensities
8
j-m flaud
8
flaud camy-peyret
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!