Unlabelled: To determine the clinical value of several parameters derived by application of the proximal isovelocity surface area method in the assessment of mitral regurgitation (MR), 28 consecutive patients with angiographic diagnosis of MR underwent color Doppler echocardiography within 48 h of cardiac catheterization. Aliasing velocities (V(N)) were baseline-shifted to 25 cm/s and the maximal radius (R) was measured from the first aliasing boundary to the tips of the mitral valve. By continuity, the regurgitant orifice area (ROA) and regurgitant stroke volume (RSV(PISA)) were obtained. We have related them to the angiographic grade, and with determination of the regurgitant stroke volume (RSV(DE)) and the regurgitant fraction (RF), we calculated the volume of the transmitral flow according to Fisher's method.
Results: RSV(DE) correlated well with RSV(PISA) (r = 0.98). A clear relation existed between the isovelocity radius and the RSV(DE) and RF (r = 0.95 and 0.88, respectively). A radius of 8 mm or more was identified well with an RSV(DE) of 40 cm3 or more (sensitivity: 100%, specificity: 95%) and an RF of 35% or more (sensitivity: 88%, specificity: 94%). The ROA was closely related to the RSV(DE) and RF, with r = 0.92 and 0.88, respectively. An ROA of 20 mm2 or more identified well patients with RSV(DE) values of 40 cm3 or more and RF values of 35% or more. The radius, RSV(PISA) and ROA were closely related to the angiographic grade of MR (r = 0.91, 0.83 and 0.92, respectively). A radius of 7 mm or more identified patients with grade III or IV of regurgitation (sensitivity: 82%, specificity: 94%), while an ROA of 15 mm2 or more discriminated well significant regurgitation (sensitivity: 91%, specificity: 94%).
Conclusions: Parameters derived by application of the proximal isovelocity surface area method provide quantitative information that can be helpful in predicting the severity of mitral regurgitation noninvasively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0167-5273(98)00355-6 | DOI Listing |
Phys Rev Lett
December 2024
CPT, CNRS, Aix Marseille Univ, Université de Toulon, (UMR 7332), Turing Center for Living Systems, Marseille, France.
Athermal (i.e., zero-temperature) underconstrained systems are typically floppy, but they can be rigidified by the application of external strain, which is theoretically well understood.
View Article and Find Full Text PDFJ Comput Neurosci
January 2025
Computational Brain Science Lab, Division of Computational Science and Technology, KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden.
This paper presents an in-depth theoretical analysis of the orientation selectivity properties of simple cells and complex cells, that can be well modelled by the generalized Gaussian derivative model for visual receptive fields, with the purely spatial component of the receptive fields determined by oriented affine Gaussian derivatives for different orders of spatial differentiation. A detailed mathematical analysis is presented for the three different cases of either: (i) purely spatial receptive fields, (ii) space-time separable spatio-temporal receptive fields and (iii) velocity-adapted spatio-temporal receptive fields. Closed-form theoretical expressions for the orientation selectivity curves for idealized models of simple and complex cells are derived for all these main cases, and it is shown that the orientation selectivity of the receptive fields becomes more narrow, as a scale parameter ratio , defined as the ratio between the scale parameters in the directions perpendicular to vs.
View Article and Find Full Text PDFMed Phys
January 2025
Deparment of Radiation Oncology, Duke University, Durham, North Carolina, USA.
Background: Stereotactic radiosurgery (SRS) is widely used for managing brain metastases (BMs), but an adverse effect, radionecrosis, complicates post-SRS management. Differentiating radionecrosis from tumor recurrence non-invasively remains a major clinical challenge, as conventional imaging techniques often necessitate surgical biopsy for accurate diagnosis. Machine learning and deep learning models have shown potential in distinguishing radionecrosis from tumor recurrence.
View Article and Find Full Text PDFJ Acoust Soc Am
January 2025
Naval Group Research, 199 av. Pierre-Gilles de Gennes, Ollioulles, 83190 France.
The theory of similitudes provides simple laws by which the response of one system (usually of small size) can be used to predict the response of another system (usually larger). This paper establishes the exact conditions and laws of similitude for the vibrations and acoustic radiation of a panel immersed in a heavy fluid and excited by a turbulent boundary layer. Previous work on vibroacoustic similitude had not considered the problem of a panel radiating in heavy fluid, for which the radiation impedance of the structure must be scaled.
View Article and Find Full Text PDFNeurosurgery
January 2025
Department of Biomedical Sciences, Humanitas University, Milan, Italy.
Background And Objectives: Understanding and managing seizure activity is crucial in neuro-oncology, especially for highly epileptogenic lesions like isocitrate dehydrogenase (IDH)-mutant gliomas. Advanced MRI techniques such as diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) have been used to describe microstructural changes associated with epilepsy. However, their role in tumor-related epilepsy (TRE) remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!