The characteristics of the inwardly rectifying K+ current activated by a mu-type opioid agonist, D-Ala2,N-MePhe4,Gly5-ol-enkephalin (DAMGO), were examined in the acutely dissociated rat periaqueductal gray neurons using the nystatin-perforated and the conventional whole-cell recording modes under voltage-clamp conditions. DAMGO activated inward currents in a concentration- and voltage-dependent manner. The DAMGO-induced current was an inwardly rectifying K+ current (I(DAMGO)) which was sensitive to K+ channel blockers, quinine and Ba2+ but insensitive to Cs+ and tetraethylammonium. In the conventional whole-cell clamp mode, guanosine 5'-O-(2-thiodiphosphate) trilithium salt (GDPbetas, 0.4 mM) inhibited the amplitude of I(DAMGO) to 28% of that of the initial current. After the intracellular perfusion with guanosine 5'-O-(3-thiotriphosphate) tetralithium salt (GTPgammas, 0.4 mM) for 1 min, the first application of DAMGO irreversibly activated I(DAMGO). By the extracellular application of N-ethylmaleimide at a concentration of 50 microM for 2 min, I(DAMGO) was completely abolished. When a conventional whole-cell patch was made with a patch-pipette containing 1 microg/ml of pertussis toxin together with 1 mM of beta-nicotinamide adenine dinucleotide, I(DAMGO) gradually declined to about 41% of its initial amplitude. The extracellular application of second messenger modulators including protein kinase inhibitor (staurosporin), protein kinase A activators (forskolin, 3-isobutyl-l-methyl-xanthine and dibutyryladenosine 3'5'-cyclic monophosphate) and protein kinase C activators (phorbol-12-myristate-13-acetate and 1-oleoyl-2-acetyl-sn-glycerol) had no effect on I(DAMGO). These results suggest that (i) DAMGO-activated inwardly rectifying K+ current is mediated by pertussis toxin-sensitive guanine nucleotide binding proteins (G-proteins); (ii) the types of G protein involved in I(DAMGO) are Gi and/or Go; and (iii) the G-proteins exert their roles in I(DAMGO) without any mediation of the second messenger systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0306-4522(98)00409-6DOI Listing

Publication Analysis

Top Keywords

inwardly rectifying
16
rectifying current
12
conventional whole-cell
12
protein kinase
12
rat periaqueductal
8
periaqueductal gray
8
gray neurons
8
idamgo
8
extracellular application
8
second messenger
8

Similar Publications

pH-induced conformational changes in the selectivity filter of a potassium channel lead to alterations in its selectivity and permeation properties.

Front Pharmacol

January 2025

IDiBE-Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, Elche, Spain.

The Selectivity Filter (SF) in tetrameric K channels, has a highly conserved sequence, TVGYG, at the extracellular entry to the channel pore region. There, the backbone carbonyl oxygens from the SF residues, create a stack of K binding sites where dehydrated K binds to induce a conductive conformation of the SF. This increases intersubunit interactions and confers a higher stability to the channel against thermal denaturation.

View Article and Find Full Text PDF

Unlabelled: Exposure to loud and/or prolonged noise damages cochlear hair cells and triggers downstream changes in synaptic and electrical activity in multiple brain regions, resulting in hearing loss and altered speech comprehension. It remains unclear however whether or not noise exposure also compromises the cochlear efferent system, a feedback pathway in the brain that fine-tunes hearing sensitivity in the cochlea. We examined the effects of noise-induced hearing loss on the spontaneous action potential (AP) firing pattern in mouse lateral olivocochlear (LOC) neurons.

View Article and Find Full Text PDF

Scope: Insulin responses to standardized meals differ between individuals. This variability may in part be explained by genotype. This systematic review evaluates associations between genotype and insulin response to an oral glucose tolerance test (OGTT) in terms of insulin area under the curve (AUC).

View Article and Find Full Text PDF

Dissecting Causal Relationships Between Antihypertensive Drug, Gut Microbiota, and Type 2 Diabetes Mellitus and Its Complications: A Mendelian Randomization Study.

J Clin Hypertens (Greenwich)

January 2025

Department of Cardiology, Hypertension Research Laboratory, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.

Limited research has investigated the impact of antihypertensive medications on type 2 diabetes mellitus (T2DM) and whether gut microbiome (GM) mediates this association. Thus, we conducted a two-sample Mendelian randomization (MR) analysis to estimate the potential impact of various antihypertensive drug target genes on T2DM and its complications. Genetic instruments for the expression of antihypertensive drug target genes were identified with expression quantitative trait loci (eQTL) in blood, which should be associated with systolic blood pressure (SBP).

View Article and Find Full Text PDF

Opioid use disorder is heritable, yet its genetic etiology is largely unknown. C57BL/6J and C57BL/6NJ mouse substrains exhibit phenotypic diversity in the context of limited genetic diversity which together can facilitate genetic discovery. Here, we found C57BL/6NJ mice were less sensitive to oxycodone (OXY)-induced locomotor activation versus C57BL/6J mice in a conditioned place preference paradigm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!