Objective: To determine the origin and clinical relevance of selected strains of porcine reproductive and respiratory syndrome (PRRS) virus (PRRSV).

Animals: 38 pigs without antibodies for PRRSV.

Procedure: A seemingly uncommon restriction endonuclease digestion site in a commercially available vaccine strain of attenuated PRRSV was tested for its stability and prevalence under defined conditions. Selected field strains of PRRSV, with or without the restriction-site marker, were subsequently tested in pigs for virulence and for their ability to replicate competitively in pigs simultaneously given the vaccine.

Results: Under experimental conditions, the restriction-site marker was stable during long-term infection of pigs. It was not detected in any of the 25 field strains of PRRSV that were isolated before use of the vaccine or 21 of 25 field strains that were isolated after use of the vaccine but that, on the basis of previous testing, were believed unrelated to the vaccine strain. Conversely, it was detected in 24 of 25 field strains that were isolated after use of the vaccine and that, on the basis of previous testing, were believed to be direct-line descendants of the vaccine strain. Putative vaccine-related strains caused more pronounced pathologic changes than did the vaccine strain alone, and they predominated during replication in pigs also given the vaccine strain.

Conclusions: In some swine herds, the vaccine strain may have persisted and mutated to a less attenuated form.

Clinical Relevance: The potential for persistence and mutation of specific strains of virus should be an important consideration when designing vaccination programs involving attenuated PRRSV.

Download full-text PDF

Source

Publication Analysis

Top Keywords

field strains
20
vaccine strain
20
isolated vaccine
12
vaccine
9
strains
8
strains porcine
8
porcine reproductive
8
reproductive respiratory
8
respiratory syndrome
8
attenuated prrsv
8

Similar Publications

Piezoelectric materials directly convert between electrical and mechanical energies. They are used as transducers in applications such as nano-positioning and ultrasound imaging. Improving the properties of these devices requires piezoelectric materials capable of delivering a large longitudinal strain on the application of an electric field.

View Article and Find Full Text PDF

A highly stretchable, self-healing, self-adhesive polyacrylic acid/chitosan multifunctional composite hydrogel for flexible strain sensors.

Carbohydr Polym

March 2025

State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road East, Chaoyang District, Beijing 100029, China. Electronic address:

Conductive hydrogels have emerged as excellent candidates for the design and construction of flexible wearable sensors and have attracted great attention in the field of wearable sensors. However, there are still serious challenges to integrating high stretchability, self-healing, self-adhesion, excellent sensing properties, and good biocompatibility into hydrogel wearable devices through easy and green strategies. In this paper, multifunctional conductive hydrogels (PCGB) with good biocompatibility, high tensile (1694 % strain), self-adhesive, and self-healing properties were fabricated by incorporating boric acid (BA) and glucose (Glu) simultaneously into polyacrylic acid (PAA) and chitosan (CS) polymer networks using a simple one-pot polymerization method.

View Article and Find Full Text PDF

Insights into the biogenic production of nanocomposites of NiO-chitosan for wastewater remediation.

Int J Biol Macromol

January 2025

Department of Chemistry, Career Point University, Hamirpur Campus, H.P., India; CNST, Career Point University, Hamirpur Campus, H.P., India. Electronic address:

In our study, we have tried to enhance the biological qualities of nickel oxide nanoparticles and nanocomposites which were prepared using the extract of Aegle marmelos tree leaves and chitosan biopolymer. For in-depth study of the fabricated samples, numerous physiochemical approaches were utilized. The analysis used consists of field emission scanning electron microscopy with energy dispersive X-ray analysis and photoluminescence, X-ray diffraction, UV-visible spectroscopy, and Fourier transform infrared spectroscopy.

View Article and Find Full Text PDF

A silent killer in the word: Review on Aspergillus flavus strains.

Toxicon

January 2025

Laboratory of Biochemistry and Molecular Biology of Centre Béninois de la Recherche Scientifique et de l'Innovation (CBRSI) 03BP2262 Cotonou, Benin; National Agricultural University, Porto-Novo, Benin. Electronic address:

Filamentous fungi are recognized for their significance in food processing and antibiotic production, as well as their capacity to produce mycotoxins. Numerous secondary metabolites have been investigated, and their occurrence in foodstuffs, both in the field and during the storage of agricultural products, poses a substantial health risk to consumers. Several fungal species capable of producing mycotoxins have been documented.

View Article and Find Full Text PDF

Local Strain Engineering of Two-Dimensional Transition Metal Dichalcogenides Towards Quantum Emitters.

Nanomicro Lett

January 2025

School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, People's Republic of China.

Two-dimensional transition metal dichalcogenides (2D TMDCs) have received considerable attention in local strain engineering due to their extraordinary mechanical flexibility, electonic structure, and optical properties. The strain-induced out-of-plane deformations in 2D TMDCs lead to diverse excitonic behaviors and versatile modulations in optical properties, paving the way for the development of advanced quantum technologies, flexible optoelectronic materials, and straintronic devices. Research on local strain engineering on 2D TMDCs has been delved into fabrication techniques, electronic state variations, and quantum optical applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!