The effects of lipopolysaccharide (LPS) on the central nervous system, one of the first organs to be affected by sepsis, are still incompletely understood. Rat microglia (BMphi) constitute the main leukocyte-dependent source of reactive oxygen species in the central nervous system. The in vitro effect of LPS on agonist-stimulated superoxide (O2-) generation from BMphi appears controversial. Our purpose was to determine the time- and concentration-dependent effect of Escherichia coil LPS on phorbol-12 myristate 13-acetate-stimulated O2- generation from BMphi. Our results demonstrate that BMphi O2- generation in vitro peaked 17 h after stimulation of with .3 ng/mL LPS. Furthermore, stimulation of BMphi with LPS for 17 h resulted in the following concentration-dependent responses: .1-1 ng/mL LPS induced no prior mediator generation but potently enhanced subsequent phorbol-12 myristate 13-acetate-stimulated O2- generation; 3-10 ng/mL LPS caused nitric oxide, tumor necrosis factor-alpha (TNF-alpha), thromboxane B2 and matrix metalloproteinase-9 release although partially inhibiting ensuing phorbol-12 myristate 13-acetate-stimulated O2- generation; 30-100 ng/mL LPS, maximized nitric oxide, TNF-alpha, thromboxane B2, matrix metalloproteinase-9 generation with concomitant lactic dehydrogenase release although strongly deactivating successive phorbol-12 myristate 13-acetate-stimulated O2 production. Our in vitro studies suggest that enhanced release of these four mediators (nitric oxide, TNF-alpha, thromboxane B2, and matrix metalloproteinase-9) during stimulation of BMphi with LPS might play a critical role in the subsequent ability of BMphi to generate O2- in vivo. Potential clinical implications of our findings are suggested by the fact that LPS levels similar to the ones used in this study have been observed in cerebrospinal fluid both in Gram-negative meningitis and sepsis.

Download full-text PDF

Source

Publication Analysis

Top Keywords

o2- generation
20
nitric oxide
16
phorbol-12 myristate
16
myristate 13-acetate-stimulated
16
ng/ml lps
16
13-acetate-stimulated o2-
12
tnf-alpha thromboxane
12
thromboxane matrix
12
matrix metalloproteinase-9
12
lps
10

Similar Publications

Upcycling industrial peach waste to produce dissolving pulp.

Environ Sci Pollut Res Int

January 2025

Laboratory of Design and Development of Innovative Knitted Textiles and Garments, Department of Industrial Design and Production Engineering, University of West Attica, 12244, Egaleo, Attica, Greece.

This study investigates the production of high-purity cellulose pulp from peach (Prunus persica) fruit wastes generated during the processing of a Greek compote and juice production industry. A three-step chemical process is used, including alkaline treatment with NaOH, organic acid (acetic and formic) treatment, and hydrogen peroxide treatment, with the goal of cellulose extraction and purification. A fractional factorial design optimized reagent levels, revealing the strong influence of NaOH concentration on α-cellulose content and degree of polymerization.

View Article and Find Full Text PDF

Exogenous Coreactant-Free Electrocatalytic Reactive Oxygen Species-Driven Dual-Signal Molecularly Imprinted Electrochemiluminescence Sensor for the Detection of Trenbolone.

Anal Chem

January 2025

The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China.

Conventional dual-signal electrochemiluminescence (ECL) sensors feature high sensitivity and reliability, but the involvement of coreactants inevitably results in a complex configuration and shows reproducibility risk. Here, we propose an exogenous coreactant-free dual-signal platform, comprising luminol (anodic luminophore), CdSe quantum dots (cathodic luminophore), and CoO/TiC electrocatalyst (coreaction promoter). At different redox potentials, CoO/TiC induces water oxidation and oxygen reduction to produce OH and O radicals, which subsequently drive cathodic and anodic ECL emission, respectively.

View Article and Find Full Text PDF

Magnetic Field-Accelerated Nonthermal Plasma Digestion for Field Pretreatment and Determination of Heavy Metals in Biological Samples.

Anal Chem

January 2025

Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.

Field analysis of heavy metals in biological samples is essential for assessing their potential threats to human health. The development of portable pretreatment and detection devices is crucial to address this challenge. Herein, a magnetic field-accelerated nonthermal plasma digestion device using dielectric barrier discharge (DBD) is designed for the rapid and environmentally friendly pretreatment of biological samples and subsequently combined with point discharge-optical emission spectrometry (PD-OES) for sensitive determination of heavy metals.

View Article and Find Full Text PDF

Fluorescent nitrogen-doped carbon dots (N-GQDs) with long-wavelength emission properties are of increased interest for technological applications. They are widely synthesized through the solvothermal treatment of graphene oxide (GO) using ,-dimethylformamide (DMF) as a cleaving and doping agent. However, this process simultaneously generates undesired interfering blue-emissive by-products.

View Article and Find Full Text PDF

Green Glyphosate Treatment with Ferrihydrite and CaO via Forming Surface Ternary Complex.

Environ Sci Technol

January 2025

Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.

Glyphosate (PMG) is a globally used broad-spectrum herbicide and receives environmental concerns because of its moderate persistence and potential carcinogenicity. Traditional PMG treatment methods often suffer from the generation of a more toxic and persistent aminomethylphosphonic acid (AMPA) intermediate. Herein, we develop a green method with ferrihydrite (FH) and CaO (FH/CaO) via regulating the coordination of PMG with FH and Ca, where the phosphonate group of PMG preferentially binds to FH and its carboxylate side complexes with Ca released by CaO, forming a FH-PMG-Ca ternary surface complex.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!