Stereolithographic (SL) biomodelling is a new technology that allows three-dimensional (3-D) computed tomography (CT) data to be used to manufacture solid plastic replicas of anatomical structures (biomodels). A prospective trial with the objective of assessing the utility of biomodelling in complex surgery has been performed. Forty-five patients with craniofacial, maxillofacial, skull base cervical spinal pathology were selected. 3-D CT or MR scanning was performed and the data of interest were edited and converted into a form acceptable to the rapid prototyping technology SL. The data were used to guide a laser to selectively polymerize photosensitive resin to manufacture biomodels. The biomodels were used by surgeons for patient education, diagnosis and operative planning. An assessment protocol was used to test the hypothesis that 'biomodels in addition to standard imaging had greater utility in the surgery performed than the standard imaging alone'. Biomodels significantly improved operative planning (images 44.09%, images with biomodel 82.21%, P < .01) and diagnosis (images 65.63%, images with biomodel 95.23%, P < .01). Biomodels were found to improve measurement accuracy significantly (image measurement error 44.14%, biomodel measurement error 7.91%, P < .05). Surgeons estimated that the use of biomodels reduced operating time by a mean of 17.63% and were cost effective at a mean price of $1031 AUS. Patients found the biomodels to be helpful for informed consent (images 63.53%, biomodels 88.54%, P < .001). Biomodelling is an intuitive, user-friendly technology that facilitated diagnosis and operative planning. Biomodels allowed surgeons to rehearse procedures readily and improved communication between colleagues and patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s1010-5182(99)80007-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!