Past trials with soft and calcified tissues have demonstrated that long pulse train (2.5 mus) Er:YAG (2.94 mum) laser may be used to ablate tooth structure of human teeth. Determination of physical and thermal damage to surrounding tissue during removal of enamel and dentin is a primary objective of this study. Extracted human teeth with thermal probes imbedded in the pulp chambers were submitted to cavity preparation using an Erbium YAG laser with water mist. Wavelength selection as well as use of a water mist during the procedure resulted in efficient tissue removal without significant surrounding damage. Ground sections and SEM sections of teeth showed little or no melting or ash formation in adjacent dentin and enamel and no visible change in the pulp chamber. The surfaces produced by laser ablation were rough and irregular with craters and grooves. Average temperature change in the pulp chamber monitored during tooth preparation was 2.2 degrees Centigrade. These findings suggest that constantly available water aids vaporization and microexplosions, increasing the efficiency of tooth structure removal, and aids in cooling of the tooth structures. The long pulse Er:YAG (2.94 mum) laser may be an effective method for tooth reduction applications when used with a water mist.

Download full-text PDF

Source
http://dx.doi.org/10.2351/1.4745270DOI Listing

Publication Analysis

Top Keywords

294 mum
12
mum laser
12
water mist
12
long pulse
8
eryag 294
8
tooth structure
8
human teeth
8
tissue removal
8
change pulp
8
pulp chamber
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!