To prevent wound dehydration and bacterial penetration, a wound dressing should be occlusive, but on the other hand it should also be permeable for wound exudate to prevent bullae formation. To meet these requirements a new type of polyurethane wound dressing which consists of a microporous top layer (pore size less than 0.7 mum) supported by a sublayer with a highly porous sponge-like structure containing micropores (pore size less than 10 mum) as well as macropores (pore size: 50-100 mum) was designed. The pores of both layers are interconnected and form a continuous structure in the membrane. Membranes according to this design were prepared either by means of a two-step or by means of a one-step casting process. Both fabrication methods are based on phase inversion techniques. Asymmetric polyurethane Biomer membranes prepared by the two-step casting process were tested in vivo as full thickness skin substitutes using guinea pigs. Neither wound dehydration nor infections were observed while the drainage capacity of the wound dressing was effective in preventing bullae formation. Furthermore the wound dressing remained firmly adhered to the wound surface during the whole process of wound healing. In contrast to all other commercial wound dressings currently available the polyurethane wound dressing applied on excised clean wounds did not need to be replaced during healing but could be left on the wound until full regeneration of the skin had taken place after which it was spontaneously repelled.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jab.770030408 | DOI Listing |
Sci Rep
January 2025
Chemistry Department, Faculty of Science, Menoufia University, Shibin El-Kom, 32511, Egypt.
In this work, microalgae-based zinc oxide nanoparticles loaded with electrospun polyvinyl alcohol (PVA)/sodium alginate (SA) nanofibers were fabricated by electro-spinner. PVA/SA fibrous mats were crosslinked by citric acid, which enhanced their thermal stability and swelling behavior. Green-synthesized ZnO NPs were laboratory synthesized and characterized by FTIR, XRD, EDX, SEM, TEM and TGA analyses.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Faculty of Textile Technologies and Design, Istanbul Technical University, Istanbul, Turkey. Electronic address:
Wound care presents an imposed financial burden for healthcare organizations, prompting the need for novel and cost-efficient dressings. In this study, we address this challenge by introducing a novel approach to fabricate antibacterial alginate-based fibrous materials using a combination of wet spinning and the wet-laying method, which offer advantages including structural and functional properties such as breathability, nontoxicity, biocompatibility, and cost-effectiveness. The wet spinning method was employed to develop porous and non-porous Ca-alginate fibers with diameters of 100 ± 4.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Science and Technology Innovation Center of Health Products and Medical Materials with Characteristic Resources, Jilin Agricultural University, Changchun 130118, China. Electronic address:
The healing of wounds in aging skin is a challenging issue that has not been thoroughly studied. Composite hydrogels made from natural polysaccharides have shown potential as dressings for various types of wounds. In this study, we prepared a polysaccharide-based composite hydrogel to provide a new strategy for treating aging skin wounds.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China. Electronic address:
Dressings are prone to adhering to new tissues, leading to secondary harm to the wound during dressing replacement. To address this issue, many strategies have been proposed to endow dressings with anti-adhesive functions. However, the introduction of exogenous agents or stimuli is always needed, and difficulty in achieving adaptive removal is also present.
View Article and Find Full Text PDFBiomaterials
December 2024
State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China. Electronic address:
Persistent inflammation is a major cause of diabetic wounds that are difficult to heal. This is manifested in diabetic wounds with excessive reactive oxygen clusters (ROS), advanced glycation end products (AGE) and other inflammatory factors, and difficulty in polarizing macrophages toward inhibiting inflammation. Berberine is a natural plant molecule that inhibits inflammation; however, its low solubility limits its biological function through cytosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!