Prototype development and comparative evaluation of wheelchair pressure mapping system.

Assist Technol

Center for Rehabilitation Technology, Helen Hayes Hospital, West Haverstraw, New York 10993.

Published: December 1993

AI Article Synopsis

  • Wheelchair pressure mapping devices currently have limitations in durability, data presentation, and clinical efficiency, prompting this project to identify ideal specifications for a new pressure mapping system called Tekscan "Seat."
  • Tests were conducted comparing the Tekscan, FSA, and Talley TPM3 systems in terms of reproducibility, hysteresis, and creep, with the TPM3 showing the best accuracy, while the FSA was strong in clinical use but had issues with hysteresis.
  • The Tekscan system was preferred for its real-time display and options, despite its own limitations, and the study highlighted potential software and fabrication improvements to enhance accuracy and stability in future devices.

Article Abstract

Wheelchair pressure mapping devices used in the prescription of seat cushions and postural supports have been limited in durability, data presentation, and/or clinical efficiency. This project sought to establish the ideal specifications for clinically useful pressure mapping systems, and to use these specifications to influence the design of an innovative wheelchair pressure mapping system (Tekscan "Seat"). Technology, previously developed for measurement of forces of dental occlusion and of the foot during gait, was applied to wheelchair seat mapping. Tests were designed to compare the performance of three pressure mapping systems: the Tekscan system, the FSA system, and the Talley TPM3. Bench tests were done to measure reproducibility, hysteresis, and creep of each of the pressure mapping systems. A contoured loader gauge was developed to test for the influence of hammocking. Tests were also performed using spinal cord-injured subjects to demonstrate the relative performance of the pressure mapping systems in a clinical setting. A focus group session was conducted with seating specialists to review the strengths and weakness of the systems for routine clinical use. The TPM3 was found to be the most accurate, stable, and reproducible but limited in ease of use, speed, and data presentation. FSA was rated well in clinical application and data management but demonstrated a pronounced hysteresis (+/-19%) and creep (4%). The Tekscan system also showed substantial hysteresis (+/-20%) and creep (19%) but was preferred by clinicians for its real-time display capabilities, resolution, and display options. Some trends in system performance on varied support surfaces were identified and can be a valuable guide to interpretation of measurements and prescription decision making in the clinic. Problems identified with the accuracy and stability of the Tekscan and FSA systems may be amenable to resolution with software correction and changes in fabrication. With these improvements all three systems show the potential to be useful clinical tools.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10400435.1993.10132213DOI Listing

Publication Analysis

Top Keywords

pressure mapping
28
mapping systems
16
wheelchair pressure
12
mapping
8
mapping system
8
data presentation
8
tekscan system
8
pressure
7
systems
7
system
6

Similar Publications

Shafting alignment is crucial for marine propulsion systems and may affect the safety and stability of ship operations. Air spring vibration isolation systems (ASVISs) for marine shafting can help control the shafting alignment state by actively adjusting air spring pressures while effectively reducing the mechanical noise. However, how to accurately control the alignment state of marine shafting with air spring vibration isolation system remains a challenge.

View Article and Find Full Text PDF

Genome-wide identification, characterization, and functional analysis of the CHX, SOS, and RLK genes in Solanum lycopersicum under salt stress.

Sci Rep

January 2025

Department of Plant Genetic Transformation, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Cairo, Egypt.

The cation/proton exchanger (CHX), salt overly sensitive (SOS), and receptor-like kinase (RLK) genes play significant roles in the response to salt stress in plants. This study is the first to identify the SOS gene in Solanum lycopersicum (tomato) through genome-wide analysis under salt stress conditions. Quantitative reverse transcription PCR (qRT-PCR) results indicated that the expression levels of CHX, SOS, and RLK genes were upregulated, with fold changes of 1.

View Article and Find Full Text PDF

Nondestructive Monitoring of Textile-Reinforced Cementitious Composites Subjected to Freeze-Thaw Cycles.

Materials (Basel)

December 2024

Department of Mechanics of Materials and Constructions, Faculty of Engineering, Vrije Universiteit Brussel, B-1050 Brussels, Belgium.

Cementitious materials are susceptible to damage not only from mechanical loading, but also from environmental (physical, chemical, and biological) factors. For Textile-Reinforced Cementitious (TRC) composites, durability poses a significant challenge, and a reliable method to assess long-term performance is still lacking. Among various durability attacks, freeze-thaw can induce internal cracking within the cementitious matrix, and weaken the textile-matrix bond.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to compare plantar pressure distribution and gait cycle differences in patients undergoing staged bilateral total knee arthroplasty (TKA) with the same versus different implant designs.
  • Patients with the same implant design reported significantly higher functional scores and exhibited more balanced plantar pressure and gait patterns compared to those with differing designs.
  • The findings suggest that using the same implant design is crucial for achieving better movement, higher patient satisfaction, and reducing the risk of early implant failure.
View Article and Find Full Text PDF
Article Synopsis
  • Leak detection is essential for water safety and conservation, but current machine learning approaches lack interpretability, impacting their practical credibility.
  • The study presents a new model called the multi-channel convolution neural network (MCNN), which outperforms the existing frequency convolutional neural network (FCNN) with a 95.4% accuracy in real-world applications, and includes the use of MGrad-CAM for visualizing decision-making processes.
  • Findings reveal that leak acoustic signals can be clustered into patterns, with factors such as pressure and proximity influencing the signal characteristics, ultimately enhancing the model's accuracy in leak detection.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!