Synthesis of catabolite-sensitive enzymes is repressed in mutants defective in the general proteins (enzyme I and HPr) of the Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system (ptsI and ptsH mutations). To elucidate the mechanism of this phenomenon we constructed isogenic strains carrying pts mutations as well as different lesions of regulation of the lac operon or mutations affecting adenylate cyclase activity (cya mutation) and synthesis of cyclic AMP-receptor protein (crp mutation) Measurements of the differential rate of beta-galactosidase synthesis in these strains showed that the repressive effect of pts mutations was revealed in lac+, lacI, lacOc and cya bacteria, but it was lost in lacP and crp strains. It was concluded that mutational damage to the general components of the phosphoenolpyruvate-dependent phosphotransferase system diminishes activity of the lac promoter. The results obtained led to the conclusion that pts gene products (apparently phospho approximately HPr) are necessary for the initiation of transcription of catabolite-sensitive operons in E. coli.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1432-1033.1978.tb12552.xDOI Listing

Publication Analysis

Top Keywords

phosphoenolpyruvate-dependent phosphotransferase
12
phosphotransferase system
12
escherichia coli
8
coli phosphoenolpyruvate-dependent
8
pts mutations
8
involvement escherichia
4
system regulation
4
regulation transcription
4
transcription catabolic
4
catabolic genes
4

Similar Publications

Unlabelled: The ability to treat infections is threatened by the rapid emergence of antibiotic resistance among pathogenic microbes. Therefore, new antimicrobials are needed. Here we evaluate mannitol-1-phosphate 5-dehydrogenase (MtlD) as a potential new drug target.

View Article and Find Full Text PDF

Structure and mechanism of a phosphotransferase system glucose transporter.

Nat Commun

September 2024

Institute of Biochemistry and Molecular Medicine, Medical Faculty, University of Bern, Bern, Switzerland.

Glucose is the primary source of energy for many organisms and is efficiently taken up by bacteria through a dedicated transport system that exhibits high specificity. In Escherichia coli, the glucose-specific transporter IICB serves as the major glucose transporter and functions as a component of the phosphoenolpyruvate-dependent phosphotransferase system. Here, we report cryo-electron microscopy (cryo-EM) structures of the glucose-bound IICB protein.

View Article and Find Full Text PDF

Engineering PTS-based glucose metabolism for efficient biosynthesis of bacterial cellulose by Komagataeibacter xylinus.

Carbohydr Polym

November 2024

State Key Laboratory of Food Nutrition &Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science and Technology, Tianjin 300457, PR China.

Bacterial cellulose (BC) is a renewable biomaterial that has attracted significant attention due to its excellent properties and wide applications. Komagataeibacter xylinus CGMCC 2955 is an important BC-producing strain. It primarily produces BC from glucose while simultaneously generating gluconic acid as a by-product, which acidifies the medium and inhibits BC synthesis.

View Article and Find Full Text PDF

Aims: This study evaluates the antibacterial characteristics and mechanisms of combined tea polyphenols (TPs), Nisin, and ε-polylysine (PL) against Streptococcus canis, Streptococcus minor, Streptococcus mutans, and Actinomyces oris, common zoonotic pathogens in companion animals.

Methods And Results: Pathogenic strains were isolated from feline oral cavities and assessed using minimum inhibitory concentration (MIC) tests, inhibition zone assays, growth kinetics, and biofilm inhibition studies. Among single agents, PL exhibited the lowest MIC values against all four pathogens.

View Article and Find Full Text PDF

A new member of the family Flavobacteriaceae (termed Hal144) was isolated from the marine breadcrumb sponge Halichondria panicea. Sponge material was collected in 2018 at Schilksee which is located in the Kiel Fjord (Baltic Sea, Germany). Phylogenetic analysis of the full-length Hal144 16S rRNA gene sequence revealed similarities from 94.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!