The fluvial deposition of mine tailings generated from historic mining operations near Butte, Montana, has resulted in substantial surface and shallow groundwater contamination along Silver Bow Creek. Biogeochemical processes in the sediment and underlying hyporheic zone were studied in an attempt to characterize interactions consequential to heavy-metal contamination of shallow groundwater. Sediment cores were extracted and fractionated based on sediment stratification. Subsamples of each fraction were assayed for culturable heterotrophic microbiota, specific microbial guilds involved in metal redox transformations, and both aqueous- and solid-phase geochemistry. Populations of cultivable Fe(III)-reducing bacteria were most prominent in the anoxic, circumneutral pH regions associated with a ferricrete layer or in an oxic zone high in organic carbon and soluble iron. Sulfur- and iron-oxidizing bacteria were distributed in discrete zones throughout the tailings and were often recovered from sections at and below the anoxic groundwater interface. Sulfate-reducing bacteria were also widely distributed in the cores and often occurred in zones overlapping iron and sulfur oxidizers. Sulfate-reducing bacteria were consistently recovered from oxic zones that contained high concentrations of metals in the oxidizable fraction. Altogether, these results suggest a highly varied and complex microbial ecology within a very heterogeneous geochemical environment. Such physical and biological heterogeneity has often been overlooked when remediation strategies for metal contaminated environments are formulated.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC91219 | PMC |
http://dx.doi.org/10.1128/AEM.65.4.1548-1555.1999 | DOI Listing |
Environ Geochem Health
January 2025
Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India.
Coal mining in India, especially open-cast mining, substantially strengthens the economy while concurrently causing environmental deterioration, such as soil pollution with toxic chemicals and heavy metals. This study sought to examine the efficacy of vermicompost as a remediation technique for Mine Tailing Soil (MTS) in the Ledo Coal Fields. During a 120-day duration, different concentrations of vermicompost (20%, 30%, and 40%) were administered to MTS, and the impacts on soil physicochemical parameters, fertility, and plant growth were evaluated.
View Article and Find Full Text PDFChempluschem
January 2025
China University of Mining and Technology, School of electrical and power engineering, NO.1, Daxue Road, 221116, Xuzhou, CHINA.
The mining industry produces a large amount of industrial solid waste every year. Among them, fly ash (FA), slag and tailings are the three main solid wastes, which can cause soil pollution, air pollution, water pollution and serious threat to human health if not handled properly. At present, the treatment methods of industrial solid waste mainly include direct landfill, recovery of high-value components, production of construction materials, etc.
View Article and Find Full Text PDFIntegr Environ Assess Manag
January 2025
U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO, United States.
Historic copper mining left a legacy of metal-rich tailings resulting in ecological impacts along and within Torch Lake, an area of concern in the Keweenaw Peninsula, Michigan, USA. Given the toxicity of copper to invertebrates, this study assessed the influence of this legacy on present day nearshore aquatic and terrestrial ecosystems. We measured the metal (Co, Cu, Ni, Zn, Cd) and metalloid (As) concentrations in sediment, pore water, surface water, larval and adult insects, and two riparian spider taxa collected from Torch Lake and a nearby reference lake.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Applied Geochemistry, Department of Civil, Environmental and Natural Resource Engineering, Luleå University of Technology, Luleå, Sweden.
Chemosphere
January 2025
Department of Civil and Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario, M5S 1A4, Canada. Electronic address:
Sulfur-oxidizing bacteria (SOB) play a vital role in the occurrence of sulfur oxidation intermediate (SOI) compounds often recalcitrant to currently available, abiotic treatment within metal mine tailings impoundments (TI). As inadvertent SOI discharge post-treatment can lead to the uncontrolled acidification of receiving environments, it becomes increasingly important to elucidate the environmental controls on SOB identities and sulfur cycling within these relatively unstudied systems. Here, results identified controlling factors on SOB community differentiation and associated metabolic pathway occurrence through integrated physicochemical, geochemical, and microbial field and experimental investigation across three summers (2016, 2017, 2021) in a stratified Northern Ontario base metal TI.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!