The central nucleus of the inferior colliculus (ICc) is a major processing center for the ascending auditory pathways. Gamma-aminobutyric acid (GABA) and excitant amino acids (EAAs) are essential for coding many auditory tasks in the IC. Recently, a number of neurochemical and immunocytochemical studies have suggested an age-related decline in GABAergic inhibition in the ICc, and possibly excitant-amino-acid-mediated excitation as well. The objective of this study was to compare quantitatively changes in the synaptic organization of the ICc among three age groups (3, 19, and 28 months) of Fischer-344 rats. Immunogold electron microscopic methods were used to determine if there were age-related changes in the density, distribution, or morphology of GABA-immunoreactive (+) and GABA-immunonegative (-) synapses in the ICc. The data suggest similar losses of excitatory and inhibitory synapses in the ICc. There were significant reductions in the densities of GABA+ and GABA- synaptic terminals (approximately 30% and approximately 24%, respectively) and synapses (approximately 33% and approximately 26%, respectively) in the ICc of 28-month-old rats relative to 3-month-olds. The numeric values, which were adjusted to consider changes in volume of the IC with age, depict similar effects, although the effect magnitude for the adjusted values was reduced by approximately 9%. For both types of synapses, the decreases did not differ significantly from each other. The reductions in synaptic numbers appeared, to be related to a similar numeric decline in dendrites, in particular those with calibers of between 0.5 and 1.5 microm. The number and distribution of synaptic terminals on the remaining dendrites of GABA- neurons appeared not to undergo major age-related changes. GABA+ neurons, on the other hand, may have evolved patterns of synaptic and dendritic change during aging in which the distribution of synaptic terminals shifts to dendrites of larger caliber. In the 19-month group, the synaptic areas were elevated in terminals apposed to dendrites with calibers of 1.5 microm or less. However, this increase in synaptic size did not persist in the aged animals. No neuronal losses were detectable among the three age groups. Thus, the decrease in GABA and EAAs identified in the IC by previous studies may be attributable to synaptic and dendritic declines, rather than cell loss.

Download full-text PDF

Source

Publication Analysis

Top Keywords

synaptic terminals
12
synaptic
9
central nucleus
8
nucleus inferior
8
inferior colliculus
8
fischer-344 rats
8
three age
8
age groups
8
age-related changes
8
synapses icc
8

Similar Publications

Painful diabetic neuropathy (PDN) is a challenging complication of diabetes with patients experiencing a painful and burning sensation in their extremities. Existing treatments provide limited relief without addressing the underlying mechanisms of the disease. PDN involves the gradual degeneration of nerve fibers in the skin.

View Article and Find Full Text PDF

Cannabinoid receptor 1 (CB1) regulates synaptic transmission through presynaptic receptors in nerve terminals, and its physiological roles are of clinical relevance. The cellular sources and synaptic targets of CB1-expressing terminals in the human cerebral cortex are undefined. We demonstrate a variable laminar pattern of CB1-immunoreactive axons and electron microscopically show that CB1-positive GABAergic terminals make type-2 synapses innervating dendritic shafts (69%), dendritic spines (20%) and somata (11%) in neocortical layers 2-3.

View Article and Find Full Text PDF

High-frequency stimulation (HFS)-induced long-term potentiation (LTP) is generally regarded as a homosynaptic Hebbian-type LTP, where synaptic changes are thought to occur at the synapses that project from the stimulation site and terminate onto the neurons at the recording site. In this study, we first investigated HFS-induced LTP on urethane-anesthetized rats and found that cortical HFS enhances neural responses at the recording site through the strengthening of local connectivity with nearby neurons at the stimulation site, rather than through synaptic strengthening at the recording site. This enhanced local connectivity at the stimulation site leads to increased output propagation, resulting in signal potentiation at the recording site.

View Article and Find Full Text PDF

Investigating Complexin-Membrane Interactions Using NMR and Optical Methods.

Methods Mol Biol

January 2025

Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA.

Complexins are a family of small presynaptic proteins that regulate neurotransmitter release at nerve terminals and are highly conserved in evolution. While direct interactions with SNARE proteins are critical for all complexin functions, binding of their disordered C-terminal domains (CTD) to membranes, especially to synaptic vesicle membranes, is essential for the ability of complexin to inhibit vesicle release. Furthermore, while some complexin CTDs possess an endogenous affinity for membranes, other complexin isoforms are subject to lipidation at their C-termini, which is presumed to confer additional membrane binding.

View Article and Find Full Text PDF

Accumulation of autophagosomes in aging human photoreceptor cell synapses.

Exp Eye Res

January 2025

Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India. Electronic address:

Autophagy is common in the aging retinal pigment epithelium (RPE). A dysfunctional autophagy in aged RPE is implicated in the pathogenesis of age-related macular degeneration. Aging human retina accompanies degenerative changes in photoreceptor mitochondria.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!