We have previously demonstrated that gonadotrophin-releasing hormone (GnRH) induces not only changes in quantity but also in quality on secreted luteinizing hormone (LH), by increasing [14C]Leu (translation) and [3H]Gal (distal glycosylation) incorporation into newly synthesized hormone. In the present report, we have further examined the GnRH-induced [3H]Gal-LH synthesis and release by treating anterior pituitary cells with polypeptide synthesis and glycosylation inhibitors (cycloheximide and tunicamycin, respectively). Pituitary cells from ovariectomized adult rats were cultured for 4 days and then incubated for different periods (0-5 h) in medium containing [14C]Leu plus [3H]Man or [14C]Leu plus [3H]Gal in the absence (basal) or presence of 10 nmol/L GnRH with or without (control) cycloheximide (1.0 and 4.0 microg/mL) or tunicamycin (0.5 and 2.0 microg/mL). At the end of each incubation period, the cells and the medium were separated and processed for DNA uptake and newly synthesized LH (labeled LH, by immunoprecipitation with a-betaLH) determinations. The velocity of synthesis and release (between 0 and 2 h, and between 2 and 5 h) was calculated by regression analysis and the statistical significance of differences was determined by the slope test. GnRH enhanced the rates of synthesis and release of [14C]Leu-, [3H]Man-, and [3H]Gal-LH to 157 and 237; 164 and 190; and 272 and 508% of basal values, respectively. Cycloheximide totally blocked synthesis and release of [14C]Leu-LH and greatly reduced those of [3H]Man-LH, resulting in the loss of cellular responsiveness to GnRH. Addition of tunicamycin to the pituitary cells inhibited the rates of synthesis and release of [3H]Man-LH which had been induced by GnRH, without altering those of [14C]Leu-LH. These findings indicate that glycosylation is not a condition for GnRH-stimulated LH translation. The GnRH-increased [3H]Gal-LH rates of synthesis and release were affected to a lesser extent by the inhibitors. Thus, GnRH stimulation of distal glycosylation can occur, albeit at a reduced rate, even though protein synthesis and glycosylation are blocked. In conclusion, the present results corroborate that GnRH stimulates the addition of galactose residues into LH molecule. This effect is not simply the consequence of stimulating LH polypeptide chain synthesis. In addition, it is shown that GnRH-increased LH translation is independent of glycosylation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1139/cjpp-76-10-11-1033 | DOI Listing |
Pituitary
January 2025
Departments of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland.
Background: Arginine infusion stimulates copeptin secretion, a surrogate marker of arginine vasopressin (AVP), thereby serving as a diagnostic test in the differential diagnosis of suspected AVP deficiency (AVP-D). Yet, the precise mechanism underlying the stimulatory effect of arginine on the vasopressinergic system remains elusive. Arginine plays a significant role in the urea cycle and increases the production of urea.
View Article and Find Full Text PDFSci Rep
January 2025
School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK.
Tropical peatlands are carbon-dense ecosystems that are significant sources of atmospheric methane (CH). Recent work has demonstrated the importance of trees as an emission pathway for CH from the peat to the atmosphere. However, there remain questions over the processes of CH production in these systems and how they relate to substrate supply.
View Article and Find Full Text PDFAutoimmunity
December 2025
Department of Thyroid Head and Neck Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.
Background: Exosomes derived from cancer-associated fibroblasts (CAFs) can affect tumor microenvironment (TME) of thyroid cancer (TC). The cAMP response element binding protein 1 (CREB1) acts as a transcription factor to participate in cancer development. Currently, we aimed to explore the molecular mechanism of exosome-associated CREB1 and C-C motif chemokine ligand 20 (CCL20) in TC.
View Article and Find Full Text PDFCell Death Dis
January 2025
NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, 110004, China.
Metabolic rewiring underlies effective macrophages defense to respond disease microenvironment. However, the underlying mechanisms driving metabolic rewiring to enhance macrophage effector functions remain unclear. Here, we demonstrated that the metabolic reprogramming in inflammatory macrophages depended on the acetylation of CLYBL, a citramalyl-CoA lyase, at lysine 154 (K154), and blocking CLYBL-K154 acetylation restricted the release of pro-inflammatory factors.
View Article and Find Full Text PDFTransl Psychiatry
January 2025
Department of Genetic Psychology, Faculty of Psychology, Ruhr-University Bochum, Universitätsstraße 150, Bochum, Germany.
Cell-free DNA (cfDNA) is continuously shed by all cells in the body, but the regulation of this process and its physiological functions are still largely unknown. Previous research has demonstrated that both nuclear (cf-nDNA) and mitochondrial (cf-mtDNA) cfDNA levels increase in plasma in response to acute psychosocial and physical stress in males. This study further investigated these findings by testing 31 female participants (16 using oral hormonal contraception and 15 not using oral hormonal contraception), and the results were subsequently compared with those of 16 male participants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!