A sensitivity study of the key parameters in the interfacial photopolymerization of poly(ethylene glycol) diacrylate upon porcine islets.

Biotechnol Bioeng

Division of Chemistry and Chemical Engineering, California Institute of Technology, Mail Stop 210-41, Pasadena, California 91125, USA.

Published: March 1998

A method has been defined to interfacially photopolymerize poly(ethylene glycol) diacrylates (PEG diacrylates) to form a crosslinked hydrogel membrane upon the surfaces of porcine islets of Langerhans to serve as an immune barrier for allo- and xenotransplantation. A sensitivity study of six key parameters in the interfacial photopolymerization process was performed to aid in determination of the optimal encapsulation conditions, leading to the most uniform hydrogel membranes and viable islets. The key parameters included the concentrations of the components of the initiation scheme, namely eosin Y, triethanolamine, and 1-vinyl 2-pyrrolidinone. Other parameters investigated included the duration and flux of laser irradiation and the PEG diacrylate molecular weight. Each parameter was doubled and halved from the standard conditions used in the encapsulation process while holding all the remaining parameters at the standard conditions. The effects of changing each parameter on islet viability, encapsulation efficiency, and gel thickness were quantified. Islet viability was sensitive to the duration of laser illumination, viability significantly increasing as the duration was reduced. Encapsulation efficiency was sensitive to the concentrations of eosin Y, triethanolamine, and 1-vinyl 2-pyrrolidinone, to the laser flux, and to the PEG diacrylate molecular weight. Increasing the concentration of eosin Y significantly improved the encapsulation efficiency, while decreasing the concentration of 1-vinyl 2-pyrrolidinone and increasing the concentration of triethanolamine had the greatest effects in significantly reducing the encapsulation efficiency. Gel thickness was sensitive to the concentrations of triethanolamine and 1-vinyl 2-pyrrolidinone, to the duration of laser illumination, and to the PEG diacrylate molecular weight. Increasing the PEG diacrylate molecular weight significantly increased the gel thickness, while decreasing the concentration of 1-vinyl 2-pyrrolidinone and increasing the concentration of triethanolamine had the greatest effects in significantly reducing the gel thickness. From this sensitivity study, conditions were determined to encapsulate porcine islets, resulting in greater than 90% islet viability and greater than 90% encapsulation efficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1002/(sici)1097-0290(19980320)57:6<655::aid-bit3>3.0.co;2-kDOI Listing

Publication Analysis

Top Keywords

1-vinyl 2-pyrrolidinone
20
encapsulation efficiency
20
peg diacrylate
16
diacrylate molecular
16
molecular weight
16
gel thickness
16
sensitivity study
12
key parameters
12
porcine islets
12
triethanolamine 1-vinyl
12

Similar Publications

A novel water-soluble polymer nanocomposite containing ultra-small iron oxide nanoparticles, intercalated into a biocompatible matrix of 1-vinyl-1,2,4-triazole and -vinylpyrrolidone copolymer has been synthesized for the first time. The use of an original polymer matrix ensured effective stabilization of the crystalline phase of iron oxides at an early stage of its formation in an ultra-small (2-8 nm, average diameter is 4.8 nm) nanosized state due to its effective interaction with the functional groups of copolymer macromolecules.

View Article and Find Full Text PDF

This study investigates the feasibility of fabrication of poly(1-vinyl-2-pyrrolidone) (Kollidon®25)-mediated filaments for producing tinidazole (TNZ)-loaded, customizable, child-friendly tablets (with varying shapes and sizes) using hot melt extrusion (HME) coupled with fused deposition modeling (FDM) technology. Kollidon®25, chosen for its ability to enhance the dissolution of TNZ (a BCS Class II drug), was evaluated for polymer-drug compatibility through Hansen solubility, polarity, and interaction parameter analyses, confirming good miscibility and affinity between TNZ and Kollidon®25. Placebo- and TNZ-loaded filaments were prepared in different ratios using HME, followed by the development of 3D-printed tablets via FDM.

View Article and Find Full Text PDF

Efficient and stable ocular lubrication is pivotal in safeguarding eye tissues from wear, especially under repetitive strain due to frequent blinking. Hydrogels have been reported to possess adjustable mechanical properties, biocompatibility, durability, and elevated water content and extensive utilization in medical fields. In this work, a kind of visible photo-cross-linking poly(vinylpyrrolidone) (PVP) hydrogel was designed and synthesized using 1-vinyl-2-pyrrolidone (NVP) and poly(ethylene glycol) diacrylate (PEGDA).

View Article and Find Full Text PDF

Immobilization of carbonic anhydrase on modified PES membranes for artificial lungs.

J Mater Chem B

February 2024

College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China.

The introduction of carbonic anhydrase (CA) onto an extracorporeal membrane oxygenation (ECMO) membrane can improve the permeability of carbon dioxide (CO). However, existing CA-grafting methods have limitations, and the hemocompatibility of current substrate membranes of commercial ECMO is not satisfactory. In this study, a 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC)/-hydroxy succinimide (NHS) activation method is adopted to graft CA with CO-catalyzed conversion activity onto a polyethersulfone (PES) membrane, which is prepared by a phase inversion technique after crosslinking polymerization of 1-vinyl-2-pyrrolidone (VP) and acrylic acid (AA) in PES solution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!