Modeling brewers' yeast flocculation.

Biotechnol Bioeng

NIZO, Department of Process Engineering, P.O. Box 20, 6710 BA Ede, The Netherlands.

Published: February 1998

Flocculation of yeast cells occurs during the fermentation of beer. Partway through the fermentation the cells become flocculent and start to form flocs. If the environmental conditions, such as medium composition and fluid velocities in the tank, are optimal, the flocs will grow in size large enough to settle. After settling of the main part of the yeast the green beer is left, containing only a small amount of yeast necessary for rest conversions during the next process step, the lagering. The physical process of flocculation is a dynamic equilibrium of floc formation and floc breakup resulting in a bimodal size distribution containing single cells and flocs. The floc size distribution and the single cell amount were measured under the different conditions that occur during full scale fermentation. Influences on flocculation such as floc strength, specific power input, and total number of yeast cells in suspension were studied. A flocculation model was developed, and the measured data used for validation. Yeast floc formation can be described with the collision theory assuming a constant collision efficiency. The breakup of flocs appears to occur mainly via two mechanisms, the splitting of flocs and the erosion of yeast cells from the floc surface. The splitting rate determines the average floc size and the erosion rate determines the number of single cells. Regarding the size of the flocs with respect to the scale of turbulence, only the viscous subrange needs to be considered. With the model, the floc size distribution and the number of single cells can be predicted at a certain point during the fermentation. For this, the bond strength between the cells, the fractal dimension of the yeast, the specific power input in the tank and the number of yeast cells that are in suspension in the tank have to be known. Copyright 1998 John Wiley & Sons, Inc.

Download full-text PDF

Source
http://dx.doi.org/10.1002/(sici)1097-0290(19980205)57:3<330::aid-bit10>3.0.co;2-kDOI Listing

Publication Analysis

Top Keywords

yeast cells
16
size distribution
12
single cells
12
floc size
12
yeast
9
cells
9
floc
8
floc formation
8
distribution single
8
specific power
8

Similar Publications

Protein-Protein Interactions (PPIs) are a key interface between virus and host, and these interactions are important to both viral reprogramming of the host and to host restriction of viral infection. In particular, viral-host PPI networks can be used to further our understanding of the molecular mechanisms of tissue specificity, host range, and virulence. At higher scales, viral-host PPI screening could also be used to screen for small-molecule antivirals that interfere with essential viral-host interactions, or to explore how the PPI networks between interacting viral and host genomes co-evolve.

View Article and Find Full Text PDF

Catalytic subunit of DNA polymerase ζ (REV3), involved in translesion-replication is evolutionarily conserved from yeast and plants to higher eukaryotes. However, a large intermediate domain is inserted in REV3 of humans and mice. The domain has "DUF4683" region, which is significantly similar to human neurite extension and migration factor (NEXMIF).

View Article and Find Full Text PDF

Site-specific incorporation of noncanonical amino acids (ncAAs) into proteins in eukaryotes has predominantly relied on the pyrrolysyl-tRNA synthetase/tRNA pair. However, access to additional easily engineered pairs is crucial for expanding the structural diversity of the ncAA toolbox in eukaryotes. The Escherichia coli-derived leucyl-tRNA synthetase (EcLeuRS)/tRNA pair presents a particularly promising alternative.

View Article and Find Full Text PDF

Extracellular vesicles of Candida albicans show dual effects on Enterococcus faecalis growth and virulence: A laboratory-based investigation.

Int Endod J

January 2025

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China.

Aim: Previous studies have shown the important relationships between Enterococcus faecalis and Candida albicans in post-treatment endodontic disease (PTED). However, the fungal-bacterial interactions and their possible functional routes are less understood. In this study, we investigated the effect of extracellular vesicles (EVs) derived from C.

View Article and Find Full Text PDF

Stem cell nanotechnology (SCN) is an important scientific field to guide stem cell-based research of nanoparticles. Currently, nanoparticles (NPs) have a rich spectrum regarding the sources from which they are obtained (metallic, polymeric, etc.), the methods of obtaining them (physical, chemical, biological), and their shape, size, electrical charge, etc.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!