Dynamics of human follicular growth and in-vitro oocyte maturation.

Hum Reprod Update

Centre for Reproduction, Growth and Development, University of Leeds, UK.

Published: May 1999

The physiological trigger for meiotic resumption in the human oocyte is the surge of luteinizing hormone, but it can also occur spontaneously if oocytes are released from antral follicles and cultured in vitro. The development of novel techniques for the culture of murine oocytes has raised the possibility of growing human oocytes to maturity in vitro. Such a system could open the door to a number of techniques with revolutionary consequences. It would clearly be of benefit in basic physiological studies of follicular development, as well as being used to test the effect of toxicological substances on oocyte maturation. More significantly, such a system could provide a source of human oocytes for in-vitro fertilization (IVF) where immature or germinal vesicle oocytes are cultured to maturity before being fertilized. If this can be achieved, it might facilitate oocyte cryopreservation, where surplus oocytes are stored, thus avoiding the need for repeated superovulation. A combination of immature oocyte cryopreservation for later maturation and IVF will provide the opportunity to establish oocyte banks and help overcome some of the practical and ethical dilemmas that are currently shadowing the field of reproductive medicine.

Download full-text PDF

Source
http://dx.doi.org/10.1093/humupd/4.6.816DOI Listing

Publication Analysis

Top Keywords

oocyte maturation
8
human oocytes
8
oocyte cryopreservation
8
oocyte
6
oocytes
6
dynamics human
4
human follicular
4
follicular growth
4
growth in-vitro
4
in-vitro oocyte
4

Similar Publications

Purpose: This study aimed to evaluate the long-term impact of mild COVID-19 infection and COVID-19 vaccination on ovarian function in patients undergoing assisted reproductive technology (ART). Specifically, we assessed ovarian outcomes between 9 and 18 months post-infection and investigated the effects of COVID-19 vaccines (inactivated virus and adenovirus) on reproductive parameters.

Methods: The study included two objectives: (a) examining ovarian function in post-COVID-19 patients (9-18 months post-infection) compared to a control group and (b) comparing reproductive outcomes in vaccinated versus unvaccinated patients.

View Article and Find Full Text PDF

fos genes in mainly invertebrate model systems: A review of commonalities and some diversities.

Cells Dev

January 2025

Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM Juriquilla, Querétaro, Querétaro, Mexico. Electronic address:

fos genes, transcription factors with a common basic region and leucine zipper domains binding to a consensus DNA sequence (TGA{}TCA), are evolutionarily conserved in eukaryotes. Homologs can be found in many different species from yeast to vertebrates. In yeast, the homologous GCN4 gene is required to mediate "emergency" situations like nutrient deprivation and the unfolded protein response.

View Article and Find Full Text PDF

Paradoxical effects of inhibition of Δ14-reductase and Δ7-reductase on porcine oocyte maturation and subsequent embryo development after parthenogenetic activation.

Theriogenology

January 2025

Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, 08826, Seoul, Republic of Korea. Electronic address:

Follicular fluid-derived meiosis-activating sterol (FF-MAS), an intermediate in the cholesterol biosynthesis pathway, plays a crucial role in the meiotic resumption of mammalian oocytes. Maintaining a high concentration of FF-MAS in vitro is challenging; therefore, AY9944 A-7, an inhibitor of Δ14-reductase [which converts FF-MAS to testis meiosis-activating sterol (T-MAS)] and Δ7-reductase (which converts T-MAS to cholesterol), has been used to enhance oocyte maturation. This study examined the effects of various concentrations (0, 10, 20, and 40 μM) of AY9944 A-7 on porcine oocyte maturation and subsequent embryo development.

View Article and Find Full Text PDF

Effect of Time-Lapse Incubation System on In Vitro Development of Alpaca Embryos.

Reprod Domest Anim

February 2025

Veterinary Embryology Laboratory, Professional School of Veterinary Medicine, Universidad Nacional de San Antonio Abad del Cusco, Sicuani-Cusco, Peru.

Currently, incubators with a time-lapse system are widely used for in vitro embryo production in several species, however, their effect on alpaca embryo development compared to conventional incubators remains unknown. The aim of this study was to compare early in vitro embryo development in alpacas using a time-lapse incubator system versus a conventional incubator. Ovaries were obtained from a slaughterhouse and 1048 cumulus-oocyte complexes (COCs) were collected and in vitro matured for 26 h in either a time-lapse system (n = 542) or a conventional incubator (n = 542).

View Article and Find Full Text PDF

Purpose: In vitro, oocyte development is susceptible to oxidative stress, which leads to endoplasmic reticulum (ER) stress. This study investigated whether the antioxidant melatonin attenuates ER stress and maintains oocyte-cumulus cell communication during the in vitro growth (IVG) of bovine oocytes.

Methods: Oocyte-granulosa cell complexes (OGCs) were harvested from slaughterhouse-derived ovaries and grown in vitro for 5 d at 38.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!