Electrical feedback in chemical synapses and the efficacy of synaptic transmission grow with the increase in the gap resistance, so they should be higher in invaginated synapses than in the flat ones. So the plastic changes in the invagination depth may provide a morphological basis for long-term changes in synaptic efficacy: long-term potentiation (LTP) in brain and retinal synapses. In retinal photoreceptor triad synapses, the electrical feedback can provide an "operational" (instantaneous) control of synaptic transmission.
Download full-text PDF |
Source |
---|
J Neurosci
January 2025
Department of Biology, University of Miami, Coral Gables, FL 33143 USA
Neuroendocrine cells react to physical, chemical, and synaptic signals originating from tissues and the nervous system, releasing hormones that regulate various body functions beyond the synapse. Neuroendocrine cells are often embedded in complex tissues making direct tests of their activation mechanisms and signaling effects difficult to study. In the nematode worm , four uterine-vulval (uv1) neuroendocrine cells sit above the vulval canal next to the egg-laying circuit, releasing tyramine and neuropeptides that feedback to inhibit egg laying.
View Article and Find Full Text PDFEur J Neurosci
January 2025
Laboratory of Human Cell Neurophysiology, N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences, Moscow, Russia.
Excessive beta oscillations in the subthalamic nucleus are established as a primary electrophysiological biomarker for motor impairment in Parkinson's disease and are currently used as feedback signals in adaptive deep brain stimulation systems. However, there is still a need for optimization of stimulation parameters and the identification of optimal biomarkers that can accommodate varying patient conditions, such as ON and OFF levodopa medication. The precise boundaries of 'pathological' oscillatory ranges, associated with different aspects of motor impairment, are still not fully clarified.
View Article and Find Full Text PDFNat Chem Biol
January 2025
Boyce Thompson Institute, Cornell University, Ithaca, NY, USA.
Intricate coupling between metabolism and protein post-translational modifications (PTMs) has emerged as a fundamental aspect of cellular regulation. Recent studies demonstrate that protein modifications can originate from diverse metabolites, and that their regulation is closely tied to the cellular metabolic state. Here we explore recently uncovered PTMs, including the concept of 'modification of a modification', as well as associated feedback and feedforward regulatory mechanisms, in which modified proteins impact not only related metabolic pathways but also other signaling cascades affecting physiology and diseases.
View Article and Find Full Text PDFSci Adv
January 2025
Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway H91 W2TY, Ireland.
The fertile gonad includes cells of two distinct developmental origins: the somatic mesoderm and the germ line. How somatic and germ cells interact to develop and maintain fertility is not well understood. Here, using grafting experiments and transgenic reporter animals, we find that a specific part of the gonad-the germinal zone-acts as a sexual organizer to induce and maintain de novo germ cells and somatic gonads in the cnidarian .
View Article and Find Full Text PDFFront Microbiol
December 2024
Scientific Research Institute of Systems Biology and Medicine, Moscow, Russia.
Introduction: WhiA is a conserved protein found in numerous bacteria. It consists of an HTH DNA-binding domain linked with a homing endonuclease (HEN) domain. WhiA is one of the most conserved transcription factors in reduced bacteria of the class Mollicutes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!