Activation of the transcription factor nuclear factor kappa B (NF-kappaB) is controlled by proteolysis of its inhibitory subunit (IkappaB) via the ubiquitin-proteasome pathway. Signal-induced phosphorylation of IkappaBalpha by a large multisubunit complex containing IkappaB kinases is a prerequisite for ubiquitination. Here, we show that FWD1 (a mouse homologue of Slimb/betaTrCP), a member of the F-box/WD40-repeat proteins, is associated specifically with IkappaBalpha only when IkappaBalpha is phosphorylated. The introduction of FWD1 into cells significantly promotes ubiquitination and degradation of IkappaBalpha in concert with IkappaB kinases, resulting in nuclear translocation of NF-kappaB. In addition, FWD1 strikingly evoked the ubiquitination of IkappaBalpha in the in vitro system. In contrast, a dominant-negative form of FWD1 inhibits the ubiquitination, leading to stabilization of IkappaBalpha. These results suggest that the substrate-specific degradation of IkappaBalpha is mediated by a Skp1/Cull 1/F-box protein (SCF) FWD1 ubiquitin-ligase complex and that FWD1 serves as an intracellular receptor for phosphorylated IkappaBalpha. Skp1/Cullin/F-box protein FWD1 might play a critical role in transcriptional regulation of NF-kappaB through control of IkappaB protein stability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC22385 | PMC |
http://dx.doi.org/10.1073/pnas.96.7.3859 | DOI Listing |
BMC Nephrol
January 2025
Department of Intensive Care Medicine, No. 971st Hospital of the People's Liberation Army Navy, Qingdao, Shandong Province, PR China.
Background: Ursodeoxycholic acid (UDCA), traditionally recognized for its hepatoprotective effects, has also shown potential in protecting kidney injury. This study aimed to evaluate the protective effects of UDCA against sepsis-induced acute kidney injury (AKI) and to elucidate the underlying mechanisms.
Methods: Sixty male C57BL/6 N mice were utilized to establish a sepsis-induced AKI model through intravenous injection of lipopolysaccharides (LPS, 10 mg/kg).
Biochim Biophys Acta Mol Basis Dis
January 2025
State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China; Department of Cariology and Endodontology, School & Hospital of Stomatology, Wuhan University, China. Electronic address:
BRCA1/BRCA2-containing complex subunit 3 (BRCC3) has been proved to exert pro-inflammatory effect in various inflammatory diseases through different mechanisms, but its involvement in pulpitis remains unclear. This study aims to investigate the regulatory role and mechanisms of BRCC3 in modulating dental pulp cell inflammation and pulpitis progression. The expression of BRCC3 was observed to be elevated in human/mouse pulpitis samples and lipopolysaccharide-stimulated human dental pulp cells (hDPCs).
View Article and Find Full Text PDFCell Death Discov
January 2025
Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China.
PARPis resistance is a challenge in the treatment of ovarian cancer. To investigate the potential mechanism involved in olaparib resistance of ovarian cancer, high-throughput sequencing was performed on olaparib-resistant SKOV3 cell line named SK/Ola. SPHK1 was upregulated in SK/Ola cells and was related to the PFS and OS in ovarian cancer patients.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Cardiothoracic Surgery, The Affiliated Jiangyin Hospital of Nantong University, 214400 Jiangyin, Jiangsu, China.
Background: This study investigates the role of small ubiquitin-like modifier (SUMO)-specific peptidase 5 (SENP5), a key regulator of SUMOylation, in esophageal squamous cell carcinoma (ESCC), a lethal disease, and its underlying molecular mechanisms.
Methods: Differentially expressed genes between ESCC mouse oesophageal cancer tissues and normal tissues were analysed via RNA-seq; among them, SENP5 expression was upregulated, and this gene was selected for further analysis. Immunohistochemistry and western blotting were then used to validate the increased protein level of SENP5 in both mouse and human ESCC samples.
Molecules
January 2025
Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia.
Dual inhibition of cyclooxygenase-2 (COX-2) and lipoxygenase (LOX) is a recognized strategy for enhanced anti-inflammatory effects in small molecules, offering potential therapeutic benefits for individuals at risk of dementia, particularly those with neurodegenerative diseases, common cancers, and diabetes type. Alzheimer's disease (AD) is the most common cause of dementia, and the inhibition of acetylcholinesterase (AChE) is a key approach in treating AD. Meanwhile, Caspase-3 catalyzes early events in apoptosis, contributing to neurodegeneration and subsequently AD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!