The yeast inositol monophosphatase is a lithium- and sodium-sensitive enzyme encoded by a non-essential gene pair.

Mol Microbiol

Instituto de Biología Molecular y Celular de Plantas, Universidad de Valencia-CSIC, Spain.

Published: February 1999

Inositol monophosphatases (IMPases) are lithium-sensitive enzymes that participate in the inositol cycle of calcium signalling and in inositol biosynthesis. Two open reading frames (YHR046c and YDR287w) with homology to animal and plant IMPases are present in the yeast genome. The two recombinant purified proteins were shown to catalyse inositol-1-phosphate hydrolysis sensitive to lithium and sodium. A double gene disruption had no apparent growth defect and was not auxotroph for inositol. Therefore, lithium effects in yeast cannot be explained by inhibition of IMPases and inositol depletion, as suggested for animal systems. Overexpression of yeast IMPases increased lithium and sodium tolerance and reduced the intracellular accumulation of lithium. This phenotype was blocked by a null mutation in the cation-extrusion ATPase encoded by the ENA1/PMR2A gene, but it was not affected by inositol supplementation. As overexpression of IMPases increased intracellular free Ca2+, it is suggested that yeast IMPases are limiting for the optimal operation of the inositol cycle of calcium signalling, which modulates the Ena1 cation-extrusion ATPase.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1365-2958.1999.01267.xDOI Listing

Publication Analysis

Top Keywords

inositol cycle
8
cycle calcium
8
calcium signalling
8
lithium sodium
8
yeast impases
8
impases increased
8
cation-extrusion atpase
8
inositol
7
impases
6
yeast
5

Similar Publications

Background Polycystic ovary syndrome (PCOS) poses a significant health concern among reproductive-aged women and is characterized by ovarian dysfunction, hyperandrogenism, and insulin resistance. This study aims to assess the efficacy and safety of metformin and myo-inositol combination therapy compared to metformin monotherapy in patients with PCOS. Materials and methods This was a phase III, double-blind, randomized controlled clinical trial.

View Article and Find Full Text PDF

Phytic Acid Delays the Senescence of Fruit by Regulating Antioxidant Capacity and the Ascorbate-Glutathione Cycle.

Int J Mol Sci

December 2024

Engineering Research Center for Fruit Crops of Guizhou Province, Engineering Technology Research Centre for Rosa Roxburghii of National Forestry and Grassland Adminstratio, College of Agriculture, Guizhou University, Guiyang 550025, China.

fruit has a short postharvest shelf life, with rapid declines in quality and antioxidant capacity. This research assessed how phytic acid affects the antioxidant capacity and quality of fruit while in the postharvest storage period and reveals its potential mechanism of action. The findings suggested that phytic acid treatment inhibits the production of malondialdehyde (MDA) and enhances the activities and expressions of glutathione peroxidase (GPX), peroxidase (POD), catalase (CAT), and superoxide dismutase (SOD) while decreasing the generation of superoxide anions (O) and hydrogen peroxide (HO).

View Article and Find Full Text PDF

The research investigated the capacity of myo-inositol (MI) in order that it improves biochemical markers in serum and follicular fluid and, ultimately, intracytoplasmic sperm injection (ICSI) outcomes of women with PCOS. Sixty infertile patients with PCOS, who were undergoing ovulation induction for ICSI, were randomly divided to two groups. The MI group received 2000 mg myo-inositol + 1 mg folic acid twice a day for 6 weeks with starting the ICSI cycle.

View Article and Find Full Text PDF

Stage-specific function of sphingolipid synthases in African trypanosomes.

mBio

December 2024

Department of Microbiology & Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA.

Unlabelled: The protozoan parasite is the only known eukaryote capable of synthesizing the three main phosphosphingolipids: sphingomyelin (SM), inositol phosphorylceramide (IPC), and ethanolamine phosphorylceramide (EPC). It has four paralogous genes encoding sphingolipid synthases (). TbSLS1 is a dedicated IPC synthase, TbSLS2 is a dedicated EPC synthase, and TbSLS3 and TbSLS4 are bifunctional SM/EPC synthases.

View Article and Find Full Text PDF

Exploring dietary methods to alter microbial communities and metabolic functions is becoming an increasingly fascinating strategy for improving health. Copra meal hydrolysate (CMH) is alternatively used as a gut health supplement. However, the functional diversity and metabolic activities in gut microbiome in relation to CMH treatment remain largely unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!