Objectives: This study examined the effects of endotoxin on cardiac contractility in human myocardium.

Background: In animal myocardium, endotoxin and cytokine treatment led to enhanced inducible nitric oxide synthase (iNOS) expression and contractile dysfunction. Effects in human myocardium are unknown.

Methods: Left ventricular myocardial preparations from failing (n = 18) and nonfailing (n = 5) human hearts were incubated for 6 and 12 h in tyrode solution or in tyrode plus lipopolysaccharides (LPS), with LPS plus N(G)-mono-methyl-L-arginine (L-NMMA), with LPS plus hemoglobin or with LPS plus the superoxide scavenger 4,5-dihydroxy-1,3-benzene disulfonic acid (Tiron). Force of contraction in response to isoprenaline (0.001 to 3 micromol/liter) was determined in electrically stimulated muscle preparations. The iNOS mRNA expression was examined by in situ hybridization and by polymerase chain reaction. The cyclic guanosine monophosphate (cGMP) levels were determined by radioimmunoassay.

Results: Isoprenaline concentration dependently increased force of contraction. Six and 12 hours of LPS treatment of failing myocardium decreased maximum inotropic response to isoprenaline by 54% (p = 0.009) and by 69% (p = 0.0023), respectively. In nonfailing myocardium, 12 h of LPS treatment decreased maximum inotropic effect of isoprenaline by 66% (p < 0.001). The LPS effects were attenuated by L-NMMA, hemoglobin and also Tiron. The iNOS mRNA was expressed in all LPS-treated preparations but also in most control myocardial preparations. In situ hybridization revealed iNOS expression within cardiac myocytes. There was no increase in myocardial cGMP content in response to endotoxin.

Conclusions: Endotoxin exposure of human myocardium leads to a depression of cardiac contractility, which is mediated by enhanced iNOS activity and release of nitric oxide (NO). Consecutive reaction of NO with superoxide and formation of peroxynitrite may contribute to the decrease in force of contraction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0735-1097(98)00660-3DOI Listing

Publication Analysis

Top Keywords

nitric oxide
12
force contraction
12
effects endotoxin
8
cardiac contractility
8
inos expression
8
human myocardium
8
myocardial preparations
8
response isoprenaline
8
inos mrna
8
situ hybridization
8

Similar Publications

The emergence of targeted anti-tumor drugs has significantly prolonged the lifespan and improved the prognosis of cancer patients. Among these drugs, vascular endothelial growth factor (VEGF) inhibitors, particularly novel small molecule tyrosine kinase inhibitors (TKIs), are extensively employed as VEGF inhibitors; however, they are also associated with a higher incidence of complications, with hypertension being the most prevalent cardiovascular toxic side effect. Currently, it is widely accepted that TKIs-induced hypertension involves multiple mechanisms including dysregulation of the endothelin (ET) axis, reduced bioavailability of nitric oxide (NO), imbalance in NO-ROS equilibrium system, vascular rarefaction, and activation of epithelial sodium calcium channels; nevertheless, excessive activation of ET system appears to be predominantly responsible for this condition.

View Article and Find Full Text PDF

Protective effects of berbamine against arginase-1 deficiency-induced injury in human brain microvascular endothelial cells.

Front Pharmacol

January 2025

Department of Geriatric Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China.

Endothelial cell dysfunction plays a crucial role in the early development of cerebral small vessel disease (CSVD). Arginase-1 (ARG1) is expressed in endothelial cells, and its deficiency may exacerbate cerebrovascular damage by increasing reactive oxygen species (ROS) production, thereby inducing endothelial cell apoptosis. Berbamine (BBM) has shown potential in neuroprotection and cardiovascular disease prevention.

View Article and Find Full Text PDF

Nitric oxide (NO) is a ubiquitous signaling molecule known to modulate various physiological processes, with specific implications in skeletal muscle and broader applications in exercise performance. This review focuses on the modulation of skeletal muscle function, mitochondrial adaptation and function, redox state by NO, and the effect of nitrate supplementation on exercise performance. In skeletal muscle function, NO is believed to increase the maximal shortening velocity and peak power output of muscle fibers.

View Article and Find Full Text PDF

Chloroform Extract from Fermented Regulates LPS-Induced Inflammation Response in RAW 264.7 Cells by Inhibiting iNOS and COX-2.

J Microbiol Biotechnol

December 2024

Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Republic of Korea.

Inflammatory is a crucial part of the immune system of body protect it from harmful invaders, such as bacteria, viruses, and other foreign substances. In this study, the effects of chloroform extract of fermented (CEFV) on lipopolysaccharide (LPS)-induced inflammatory response in RAW264.7 macrophages were investigated.

View Article and Find Full Text PDF

Oxidative stress and inflammatory dysregulation play crucial roles in pathogenesis of acute lung injury (ALI), and their cyclic synergy drives excessive inflammatory responses and further exacerbates ALI. Therefore, new effective strategies to treat ALI are urgently needed. Herein, a novel synergistic selenium based chlorogenic acid nanoparticle was developed to disrupt the cyclic synergistic effect between oxidative stress and inflammatory response in ALI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!