To maximize the productivity of virginiamycin, which is a commercially important antibiotic as an animal feed additive, an empirical approach was employed in the batch culture of Streptomyces virginiae. Here, the effects of dissolved oxygen (DO) concentration and agitation speed on the maximum cell concentration at the production phase, as well as on the productivity of virginiamycin, were investigated. To maintain the DO concentration in the fermentor at a certain level, either the agitation speed or the inlet oxygen concentration of the supply gas was manipulated. It was found that increasing the agitation speed had a positive effect on the antibiotic productivity independent of the DO concentration. The optimum DO concentration, agitation speed and addition of an autoregulator, virginiae butanolide C (VB-C), were determined to maximize virginiamycin productivity. The optimal strategy was to start the cultivation at 450 rpm and to continue until the DO concentration reached 80%. After reaching 80%, the DO concentration was maintained at this level by changing the agitation speed, up to a maximum of 800 rpm. The addition of an optimal amount of the autoregulator VB-C in an experiment resulted in the maximal production of virginiamycin M (399 mg/l), which was about 1.8-fold those obtained previously.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s002530051377 | DOI Listing |
Langmuir
January 2025
Biomedical Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States.
Lipid-coated oxygen microbubbles (OMBs) are being investigated for biomedical applications to alleviate hypoxia such as systemic oxygenation and image-guided radiosensitization therapy. Additionally, they hold potential for boarder application as oxygen carriers beyond the biomedical filed. Understanding the stability and oxygen release properties of OMBs in dynamic aqueous environments is critical for these applications.
View Article and Find Full Text PDFBioresour Technol
January 2025
Institute of Chemical Engineering, Bulgarian Academy of Sciences, Acad. Georgi Bontchev str., bl. 103, 1113 Sofia, Bulgaria. Electronic address:
The present study investigates the natural ability of Bacillus velezensis R22 to produce 2,3-BD from two inulin-rich substrates - insoluble and soluble chicory flour. After complex optimization of the media content and process parameters by consecutive application of Plackett-Burman design and response surface methodology, the strain R22 was capable of producing 71.2 g/L (95.
View Article and Find Full Text PDFFood Res Int
January 2025
Department of Food Engineering and Technology, Faculty of Food Engineering, Universidade Estadual de Campinas (UNICAMP), 13083-862, Campinas, Brazil. Electronic address:
This study focused on evaluating the fractionation of pequi oil and modeling the process using solid-liquid equilibrium (SLE) theory. The pequi oil was comprehensively characterized, including its fatty acid (FA) and acylglycerol (AG) profiles, moisture content, acidity, carotenoid levels, and thermal behavior. Low acidity and partial acylglycerols content, along with its TAG profile (mainly OOP, POP, OOO and PPP) and melting behavior proved that, in fact, this oil is quite suitable for fractionation.
View Article and Find Full Text PDFFoods
December 2024
Chemical Engineering Faculty, Centro de Estudios y de Investigación en Biotecnología (CIBIOT), Universidad Pontificia Bolivariana, Medellín 050031, Colombia.
This study evaluated the desorption of cadmium (Cd) from cocoa waste-derived flour using organic acids. Cocoa pods were collected from Antioquia and Casanare, Colombia, to analyze the geographical Cd content and its distribution within the pod tissues. Acid selection was performed using a multi-criteria decision-making (MCDM) matrix, and Cd desorption was assessed through a full factorial 2 experimental design, considering acid concentration, pulp density, and agitation speed.
View Article and Find Full Text PDFArch Microbiol
January 2025
Tecnológico Nacional de México, Instituto Tecnológico de Morelia, 58120, Morelia, Mexico.
The metabolites gluconic acid, 5-ketogluconic acid, proline, and glutamic acid, produced by Pseudomonas reptilivora B-6bs, are industrially important, particularly in food and pharmaceutical sectors. However, producing these metabolites involves biotin supplementation to enhance yields, which is an expensive additive, and reducing its use can significantly lower production costs. Thus, This study aimed to enhance the production of gluconic acid, 5-ketogluconic acid, proline, and glutamic acid without biotin supplementation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!