The phospholipases A2 (PLA2, E.C. 3.1.1.4, phosphatide sn2 acylhydrolases) are the major components of the venom of several snakes. They are responsible for several important pharmacological effects observed in ophidian incidents. PLA2 piratoxin II from Bothrops pirajai has been crystallized by the vapour-diffusion technique. X-ray diffraction data have been collected to 2.04 A resolution (90.2% complete, Rmerge = 0.070). The space group is P21 and the cell parameters are a = 46.19, b = 60.36, c = 58.74 A and beta = 96.05 degrees. The structure has been solved by molecular replacement using the crystallographic structure of PLA2 from Bothrops asper (PDB code 1CLP) as a search model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1107/s0907444998007082 | DOI Listing |
ACS Biomater Sci Eng
January 2025
Advanced Materials Department, Jožef Stefan Institute, 1000 Ljubljana, Slovenia.
Characterization and formation of the biomineral aragonite structures of the Noah's Ark shell ( L.,1758) were studied from structural, morphogenetic, and biochemical points of view. Structural and morphological features were examined using X-ray diffraction, field-emission scanning electron microscopy, and atomic force microscopy, while thermal properties were determined by thermogravimetric and differential thermal analyses.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
Background: Breast carcinoma stands out as the most widespread invasive cancer and the top contributor to cancer-related mortality in women. Nanoparticles have emerged as promising tools in cancer detection, diagnosis, and prevention. In this study, the antitumor and apoptotic capability of silver nanoparticles synthesized through Scrophularia striata extract (AgNPs-SSE) was investigated toward breast cancer cells.
View Article and Find Full Text PDFInorg Chem
January 2025
Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia.
Hydrogen-bonded cocrystals have attracted considerable attention as they allow fine-tuning of properties through the choice of hydrogen-bond donors and acceptors. In this study, triphenylarsine oxide (PhAsO) is introduced as a strong hydrogen-bond acceptor molecule. Due to its higher Lewis basicity compared to triphenylphosphine oxide (PhPO), it acts as a strong hydrogen-bond acceptor, which is demonstrated in six new cocrystals with HO and -di(hydroperoxy)cycloalkanes.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Physics, Indian Institute of Technology (IIT) Delhi, New Delhi 110016, India.
The concept of inert matrix fuel (IMF) has been proposed to utilize the energetic value of Pu and transmute minor actinides in nuclear reactors. In order to offset the initial reactivity of nuclear fuel, gadolinium (Gd) is employed as a burnable poison, owing to its high neutron absorption cross-section. To gain insights into the radiation stability and influence of grain boundaries on irradiation behaviour, 5 mol% Gd-doped ceria samples, sintered at varying temperatures, were subjected to irradiation using 400 Kr ions.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI 38000 Grenoble, France.
An original approach to characterize electrochemical interfaces at the atomic level, a challenging topic toward the understanding of electrochemical reactivity, is reported. We employed surface resonant X-ray diffraction experiments combined with their simulation using first-principle density functional theory calculations and were thus able to determine the molecular and electronic structures of the partially ionic layer facing the electrode surface, as well as the charge distribution in the surface metal layers. Pt(111) in an acidic medium at an applied potential excluding specific adsorption was studied.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!