AI Article Synopsis

  • 1Alpha,25(OH)2D3 acts as a key suppressor of parathyroid hormone (PTH) gene transcription in parathyroid cells, and its degradation leads to the formation of metabolites that also influence PTH levels.
  • A new metabolite identified as 1alpha,25(OH)2-3-epi-D3 shows almost the same effectiveness in suppressing PTH secretion as the original compound, even though it has a much lower affinity for the vitamin D receptor (VDR).
  • Interestingly, another compound, 1beta,25(OH)2-3-epi-D3, was found to stimulate PTH secretion at lower concentrations, prompting further investigation into its

Article Abstract

1Alpha,25(OH)2D3 is an important negative regulator of parathyroid hormone (PTH) gene transcription. In parathyroid cells, as in other target tissues, 1alpha,25(OH)2D3 is degraded by side chain oxidation by the inducible 24-hydroxylase. We have previously shown that one metabolite of this pathway, 1alpha,23(S),25-(OH)3-24-oxo-D3, potently suppresses PTH synthesis and secretion in cultured bovine parathyroid cells (bPTC). Further examination of the metabolites of 1alpha,25(OH)2D3 in bPTC has revealed another compound that is less polar than 1alpha,25(OH)2D3. By HPLC analysis and mass spectrometry, this metabolite was identified as 1alpha,25(OH)2-3-epi-D3. The activity of this metabol ite on PTH gene transcription was assessed by the steady-state PTH secretion by bPTC after 72-h treatment with concentrations from 10(-11) M to 10(-7) M. 1Alpha,25(OH)2-3-epi-D3 was found to be only slightly, but not significantly, less active than the native 1alpha,25(OH)2D3 in suppressing PTH secretion despite having 30 times lower affinity for the bPTC VDR. Both 1alpha,25(OH)2D3 and 1alpha,25(OH)2-3-epi-D3 maximally suppressed PTH secretion by 50%. Along with 1alpha,25(OH)2-3-epi-D3, the activities of the other two A-ring diastereomers were assessed. 1beta,25(OH)2D3 suppressed PTH only at 10(-7) M with a decrease of only 30%, in good agreement with its low VDR affinity. Surprisingly, 1beta,25(OH)2-3-epi-D3 stimulated PTH secretion by 30-50% at concentrations from 10(-11) M to 10(-8)M and fell to control (untreated) rates at 10(-7) M. The mechanism for this increase in PTH secretion is under investigation. Metabolism studies performed in bPTC cells using high concentrations of 1alpha,25(OH)2D3 substrate showed that in some incubations, the concentration of 1alpha,25(OH)2-3-epi-D3 was even higher than that of the parent substrate 1alpha,25(OH)2D3. This finding indicates a slower rate of metabolism for this diastereomer. Thus, production and accumulation of 1alpha,25(OH)2-3-epi-D3, as a major stable metabolite of 1alpha,25(OH)2D3 in parathyroid glands, may contribute to the prolonged suppressive effect of 1alpha,25(OH)2D3 on PTH gene transcription.

Download full-text PDF

Source

Publication Analysis

Top Keywords

pth secretion
20
pth gene
12
gene transcription
12
1alpha25oh2d3
10
pth
10
parathyroid hormone
8
parathyroid cells
8
concentrations 10-11
8
suppressed pth
8
secretion
7

Similar Publications

Heterodisomy in the locus is also a cause of pseudohypoparathyroidism type 1B (iPPSD3).

Front Endocrinol (Lausanne)

December 2024

Rare Disease Research Group, Molecular (Epi) Genetics Laboratory, Bioaraba Health Research Institute, Araba University Hospital, Vitoria-Gasteiz, Spain.

Objective: To identify the genetic cause underlying the methylation defect in a patient with clinical suspicion of PHP1B/iPPSD3.

Design: Imprinting is an epigenetic mechanism that allows the regulation of gene expression. The locus is one of the loci within the genome that is imprinted.

View Article and Find Full Text PDF

Glycerol-3-phosphate contributes to the increase in FGF23 production in chronic kidney disease.

Am J Physiol Renal Physiol

December 2024

Nephrology Division, Department of Medicine, Massachusetts General Hospital, Boston, MA , USAXXXX, XXX.

Why fibroblast growth factor 23 (FGF23) levels increase markedly in chronic kidney disease (CKD) is unknown. Recently, we found that phosphate stimulates renal production of glycerol-3-phosphate (G-3-P), which circulates to bone to trigger FGF23 production. To assess the impact of G-3-P on FGF23 production in CKD, we compared the effect of adenine-induced CKD in mice deficient in glycerol-3-phosphate dehydrogenase 1 (Gpd1), an enzyme that synthesizes G-3-P, along with wild-type littermates.

View Article and Find Full Text PDF

Background: As a group of more than 3.67 million people, the bone health of Chinese plasmapheresis donors, which the main population is also a risk group of osteoporosis (OP), has raised concerns. Therefore, this article investigates the relationship between bone mineral density (BMD), bone metabolism indicators, and plasmapheresis donation behavior among some high-risk plasmapheresis donors for OP in China, and further explores the mediating factors through reasonable statistical methods.

View Article and Find Full Text PDF

Background: Middle Eastern (ME) immigrants to Europe have a heavy burden of metabolic disorders including a higher prevalence of insulin resistance, T2D and obesity as compared to native-born Europeans. Vitamin D insufficiency and deficiency are prevalent conditions in people originating from the ME.

Aims: To study the differences in the levels of 25(OH)D and parathyroid hormone (PTH) across ME and European ethnicity, and the effect of 25(OH)D and PTH on insulin action and secretion.

View Article and Find Full Text PDF

Background: Malignant hypercalcemia is usually caused by osteolytic processes of metastases, production of parathormone-related peptide, or secretion of 1,25-dihydroxyvitamin D. Ectopic PTH (parathyroid hormone) production by malignancy is very unusual.

Methods: Case report and review of the literature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!