Mutations in the PHEX gene (phosphate-regulating gene with homology to endopeptidases on the X-chromosome) are responsible for X-linked hypophosphatemia (HYP). We previously reported the full-length coding sequence of murine Phex cDNA and provided evidence of Phex expression in bone and tooth. Here, we report the cloning of the entire 3.5-kb 3'UTR of the Phex gene, yielding a total of 6248 bp for the Phex transcript. Southern blot and RT-PCR analyses revealed that the 3' end of the coding sequence and the 3'UTR of the Phex gene, spanning exons 16 to 22, are deleted in Hyp, the mouse model for HYP. Northern blot analysis of bone revealed lack of expression of stable Phex mRNA from the mutant allele and expression of Phex transcripts from the wild-type allele in Hyp heterozygous females. Expression of the Phex protein in heterozygotes was confirmed by Western analysis with antibodies raised against a COOH-terminal peptide of the mouse Phex protein. Taken together, these results indicate that the dominant pattern of Hyp inheritance in mice is due to Phex haploinsufficiency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s003359901007 | DOI Listing |
JBMR Plus
February 2025
Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland.
Hypophosphatemic rickets is a rare bone disease characterized by short stature, bone deformities, impaired bone mineralization, and dental problems. Most commonly, hypophosphatemic rickets is caused by pathogenic variants in the X-chromosomal gene, but autosomal dominant and recessive forms also exist. We investigated a Finnish family in which the son (index, 29 yr) and mother (56 yr) had hypophosphatemia since childhood.
View Article and Find Full Text PDFNat Rev Nephrol
January 2025
APHP, Reference Center for Rare Diseases of Calcium and Phosphate Metabolism, and Filière OSCAR, endo ERN and ERN BOND, Paris, France.
X-linked hypophosphataemia (XLH) is a rare metabolic bone disorder caused by pathogenic variants in the PHEX gene, which is predominantly expressed in osteoblasts, osteocytes and odontoblasts. XLH is characterized by increased synthesis of the bone-derived phosphaturic hormone fibroblast growth factor 23 (FGF23), which results in renal phosphate wasting with consecutive hypophosphataemia, rickets, osteomalacia, disproportionate short stature, oral manifestations, pseudofractures, craniosynostosis, enthesopathies and osteoarthritis. Patients with XLH should be provided with multidisciplinary care organized by a metabolic bone expert.
View Article and Find Full Text PDFDiagnostics (Basel)
January 2025
Departamento de Medicina Genómica, Instituto Nacional de Rehabilitación, Calzada México-Xochimilco 289, Col. Arenal de Guadalupe, Ciudad de México 14389, Mexico.
Background/objectives: X-linked hypophosphataemic rickets (XLH) represents the most frequent type of rickets from genetic origin, it is caused by mutations on the gene. The main clinical manifestations are short stature and bone deformities. Phenotype variation is observed at the intrafamily and interfamily level.
View Article and Find Full Text PDFHum Cell
January 2025
Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, 310052, China.
This research delves into Primary Hyperoxaluria Type 2 (PH2), an autosomal recessive disorder precipitated by a unique case of compound heterozygous deleterious mutations in the GRHPR gene, specifically the intron2/3 c.214-2 T > G and the exon8 c.864-865delTG, leading to a premature stop codon at p.
View Article and Find Full Text PDFJ Clin Endocrinol Metab
December 2024
Department of Pediatric Endocrinology and Diabetes, Marmara University School of Medicine, Istanbul, Turkey.
Background: Hereditary hypophosphatemia (HH), is a rare condition related to decreased renal tubular phosphate reabsorption. Although X-linked hypophosphatemia or PHEX gene variant is the most frequent cause of HH, recent advances in next-generation sequencing (NGS) techniques enable the identification of genetic etiologies as a whole.
Objective: To identify genetic causes of HH using various genetic testing methods and to compare clinical features between FGF23-dependent and FGF23-independent HH groups.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!