Genetic studies have shown that mutations within the mahogany locus suppress the pleiotropic phenotypes, including obesity, of the agouti-lethal-yellow mutant. Here we identify the mahogany gene and its product; this study, to our knowledge, represents the first positional cloning of a suppressor gene in the mouse. Expression of the mahogany gene is broad; however, in situ hybridization analysis emphasizes the importance of its expression in the ventromedial hypothalamic nucleus, a region that is intimately involved in the regulation of body weight and feeding. We present new genetic studies that indicate that the mahogany locus does not suppress the obese phenotype of the melanocortin-4-receptor null allele or those of the monogenic obese models (Lep(db), tub and Cpe(fat)). However, mahogany can suppress diet-induced obesity, the mechanism of which is likely to have implications for therapeutic intervention in common human obesity. The amino-acid sequence of the mahogany protein suggests that it is a large, single-transmembrane-domain receptor-like molecule, with a short cytoplasmic tail containing a site that is conserved between Caenorhabditis elegans and mammals. We propose two potential, alternative modes of action for mahogany: one draws parallels with the mechanism of action of low-affinity proteoglycan receptors such as fibroblast growth factor and transforming growth factor-beta, and the other suggests that mahogany itself is a signalling receptor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/18210 | DOI Listing |
J Med Food
December 2024
Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida, USA.
Moringa ( Lam., Moringaceae), West Indian mahogany ( [L.] Jacq.
View Article and Find Full Text PDFBraz J Biol
October 2024
Universidade Federal Rural da Amazônia - UFRA, Instituto de Ciências Agrárias, Laboratório de Fisiologia Vegetal, Grupo de Estudos da Biodiversidade em Plantas Superiores, Belém, PA, Brasil.
The advancement and intensification of industrial and mining activities has generated a series of impacts on natural ecosystems, combined with the inappropriate use of agrochemicals and the erroneous disposal of electronic products, contributing to soil contamination with a diversity of chemical elements, including heavy metals. Due to this, this work aimed to evaluate the effect of increasing dosages of nickel on the anatomy, biochemistry and oxidative system of Brazilian mahogany (Swietenia macrophylla), a forest species from the Amazon, seeking to indicate the potential use of this species in phytoremediation programs. of soils contaminated with heavy metals.
View Article and Find Full Text PDFCureus
October 2024
Rheumatology, Royal National Orthopaedic Hospital, London, GBR.
Sci Rep
September 2024
Institute of Agricultural Sciences, Federal Rural University of the Amazon, Av. Presidente Tancredo Neves, campus Belém, Pará, 2501, 66077-830, Terra Firme, Brazil.
The production of açaí seed waste from the commercial and extractive exploitation of the Euterpe oleraceae palm tree is a serious problem that contributes to environmental contamination and production of greenhouse gases, a fact that suggests the need for an environmentally correct destination for this waste produced on a large scale. To this end, this study was conducted to evaluate the potential of acaí seed biochar (BCA) in mitigating the toxic effects of copper in Brazilian mahogany plants, analyzing biometrics and gas exchange. The experimental design was in randomized blocks, with five blocks, in a 4 × 3 factorial scheme, corresponding to the control (without Cu) and three concentration of Cu (200, 400, and 600 mg Cu kg) and three levels of BCA (0%, 5% and 10%) proportional to the amount of soil in the pots, totaling sixty experimental units.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!