Mutants in ABC10beta, a conserved subunit shared by all three yeast RNA polymerases, specifically affect RNA polymerase I assembly.

J Biol Chem

Service de Biochimie et Génétique Moléculaire, Bât. 142, Commissariat à l'Energie Atomique-Saclay. Gif sur Yvette, F 91191 cedex, France.

Published: March 1999

ABC10beta, a small polypeptide common to the three yeast RNA polymerases, has close homology to the N subunit of the archaeal enzyme and is remotely related to the smallest subunit of vaccinial RNA polymerase. The eucaryotic, archaeal, and viral polypeptides share an invariant motif CX2C. CC that is strictly essential for yeast growth, as shown by site-directed mutagenesis, whereas the rest of the ABC10beta sequence is fairly tolerant to amino acid replacements. ABC10beta has Zn2+ binding properties in vitro, and the CX2C. CC motif may therefore define an atypical metal-chelating site. Hybrid subunits that derive most of their amino acids from the archaeal subunit are functional in yeast, indicating that the archaeal and eucaryotic polypeptides have a largely equivalent role in the organization of their respective transcription complexes. However, all eucaryotic forms of ABC10beta harbor a HVDLIEK motif that, when mutated or replaced by its archaeal counterpart, leads to a polymerase I-specific lethal defect in vivo. This is accompanied by a specific lack in the largest subunit of RNA polymerase I (A190) in cell-free extracts, showing that the mutant enzyme is not properly assembled in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.274.13.8421DOI Listing

Publication Analysis

Top Keywords

rna polymerase
12
three yeast
8
yeast rna
8
rna polymerases
8
subunit
5
rna
5
archaeal
5
mutants abc10beta
4
abc10beta conserved
4
conserved subunit
4

Similar Publications

Background/aims: Cholangiocarcinoma (CCA) is a malignant and insidious tumor that is tricky to treat. Long non-coding RNA (LncRNA) LINC01123 is a biomolecule that influences cancer progression by regulating gene expression via influencing the regulatory function of microRNAs in gene expression. Therefore, this study investigated the connection between LINC01123 and CCA and explored the underlying mechanism.

View Article and Find Full Text PDF

DNA-joining by ligase and polymerase enzymes has provided the foundational tools for generating recombinant DNA and enabled the assembly of gene and genome-sized synthetic products. Xenobiotic nucleic acid (XNA) analogues of DNA and RNA with alternatives to the canonical bases, so-called 'unnatural' nucleobase pairs (UBP-XNAs), represent the next frontier of nucleic acid technologies, with applications as novel therapeutics and in engineering semi-synthetic biological organisms. To realise the full potential of UBP-XNAs, researchers require a suite of compatible enzymes for processing nucleic acids on a par with those already available for manipulating canonical DNA.

View Article and Find Full Text PDF

Despite the increasing burden of dengue in Kenya and Africa, the introduction and expansion of the virus in the region remain poorly understood. The objective of this study is to examine the genetic diversity and evolutionary histories of dengue virus (DENV) serotypes 1 and 3 in Kenya and contextualize their circulation within circulation dynamics in the broader African region. Viral RNA was extracted from samples collected from a cohort of febrile patients recruited at clinical sites in Kenya from 2013 to 2022.

View Article and Find Full Text PDF

Corrigendum: RNA interference of in response to Aspergillus flavus partitivirus 1 infection.

Front Microbiol

January 2025

Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China.

[This corrects the article DOI: 10.3389/fmicb.2023.

View Article and Find Full Text PDF

Background: Metabolic Syndrome (MS) is a cluster of conditions that significantly increase the risk of infertility in women. Granulosa cells are crucial for ovarian folliculogenesis and fertility. Understanding molecular alterations in these cells can provide insights into MS-associated infertility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!