Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We set out to decompose the EMG signal into its constituent motor unit action potential components to track motor unit firing rates with a high degree of accuracy and extract their average firing rate. We were able to show that this average firing rate tracks the subject's force trajectory from beginning to end. We propose that this average firing rate is a volitional control signal pointing to the existence of a 'volitional unit'. This volitional unit has to do with the projection of a group of functionally related cortico-motoneurons on a group of spinal motoneurons in the motoneuronal pool of a muscle. Our study of motor unit firing patterns during their steady state showed that spinal motoneurons respond to a descending central input in a Gaussian manner. We have further shown that the central drive itself, as represented by the average firing rate of the active motor units, also displays a Gaussian firing behavior. We have also described the existence of a 'translation factor', highly correlated to the motor unit size, which is unique to each spinal motoneuron and determines the motoneuronal response, and its resulting firing rate, to the descending inputs. As for force generation, we have shown that expressing the twitch force of a motor unit in a dynamic fashion using the 'electrotwitch' concept of firing rate x macro area, approximates motor unit force output better and accounts for firing rate related force changes more effectively than force estimates based on the mechanical twitch.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0928-4257(99)80145-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!