Biopsy of the retina and the choroid.

Int Ophthalmol Clin

Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston 02114, USA.

Published: April 1999

Download full-text PDF

Source
http://dx.doi.org/10.1097/00004397-199903910-00019DOI Listing

Publication Analysis

Top Keywords

biopsy retina
4
retina choroid
4
biopsy
1
choroid
1

Similar Publications

DNA-Dependent Protein Kinase Catalytic Subunit Prevents Ferroptosis in Retinal Pigment Epithelial Cells.

Invest Ophthalmol Vis Sci

January 2025

Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China.

Purpose: The purpose of this study was to investigate the activated core kinases involved in the DNA damage responses (DDR) during ferroptosis of retinal pigment epithelial (RPE) cells in vitro and their regulatory effects on ferroptosis.

Methods: Ferroptosis was induced by erastin in induced RPE (iRPE) cells derived from human umbilical cord mesenchymal stem cells (hUCMSCs), hUCMSCs, and induced pluripotent stem cell-derived RPE (iPSC-RPE) cells. CCK8 was employed to measure the cell viability.

View Article and Find Full Text PDF

Purpose: To evaluate the impact of Implantable Collamer Lens (ICL) implantation on anterior chamber angle parameters and posterior segment structures in highly myopic eyes and explore potential correlations between these changes. The study aimed to assess alterations in superficial and deep vessel density (SVD, DVD), foveal avascular zone (FAZ) area, and retinal nerve fiber layer (RNFL) thickness to clarify the safety profile of ICL implantation.

Methods: Prospective observational study, included 36 highly myopic eyes undergoing ICL implantation in surgery group and 23 non-surgical control eyes in non-surgery group.

View Article and Find Full Text PDF

Predicting branch retinal vein occlusion development using multimodal deep learning and pre-onset fundus hemisection images.

Sci Rep

January 2025

Department of Ophthalmology, Gangnam Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, 211, Eonjuro, Gangnam-gu, Seoul, 06273, Republic of Korea.

Branch retinal vein occlusion (BRVO) is a leading cause of visual impairment in working-age individuals, though predicting its occurrence from retinal vascular features alone remains challenging. We developed a deep learning model to predict BRVO based on pre-onset, metadata-matched fundus hemisection images. This retrospective cohort study included patients diagnosed with unilateral BRVO from two Korean tertiary centers (2005-2023), using hemisection fundus images from 27 BRVO-affected eyes paired with 81 unaffected hemisections (27 counter and 54 contralateral) for training.

View Article and Find Full Text PDF

Hereditary vitreoretinopathies (HVRs), also known as hereditary vitreoretinal degenerations comprise a heterogeneous group of inherited disorders of the retina and vitreous, collectively and variably characterised by vitreal abnormalities, such as fibrillary condensations, liquefaction or membranes, as well as peripheral retinal abnormalities, vascular changes in some, an increased risk of retinal detachment and early-onset cataract formation. The pathology often involves the vitreoretinal interface in some, while the major underlying abnormality is vascular in others. Recent advances in molecular diagnosis and identification of the responsible genes and have improved our understanding of the pathogenesis, risks and management of the HVRs.

View Article and Find Full Text PDF

Purpose: This study aimed to evaluate early-phase safety of subretinal application of AAVanc80.CAG.USH1Ca1 (OT_USH_101) in wild-type (WT) pigs, examining the effects of a vehicle control, low dose, and high dose.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!