ATP-sensitive inwardly rectifying potassium channels (KATPs) couple cell metabolism with its membrane potential. The best characterized KATP is the pancreatic KATP which is an heteromultimer of Kir6.2 and SUR1 protein subunits. KATPs are found in a variety of excitable cells, including neurons of the central nervous system. Basal ganglia (BG), especially in the substantia nigra (SN) reticulata and the globus pallidus (GP), have a high density of KATPs. Pharmacological modulation of the KATPs within the BG alters GABAergic activity and produces behavioural changes. However, the relatively high concentrations of drugs used might not have been entirely selective for the KATPs and may have acted at presynaptic nerve terminals as well as on the post-synaptic neurons. As an alternative means of examining the role of KATPs in regulating motor behavior, we used oligoantisense technology to diminish selectively Kir6.2 formation in the GP neurons. We then examined the effect of reduction in Kir6.2 expression on apomorphine-induced turning behavior in rats with unilateral 6-hydroxydopamine (6-OHDA) lesions of the SN. Two weeks after injection of 6-OHDA, contralateral circling in response to apomorphine (0.25 mg/kg sc) was recorded. Kir6.2 antisense oligodeoxyribonucleotide (ODN) was then administered daily for 6 days into the GP ipsilateral to the 6-OHDA injection. Responses to apomorphine were then tested again and the animals killed to determine the effect of the antisense ODN on Kir6. 2 mRNA. Administration of Kir6.2 antisense ODN significantly attenuated apomorphine-induced contralateral turning and specifically reduced Kir6.2 mRNA in the injected GP. These results are consistent with pharmacological experiments which suggest that KATP channels in the GP are involved in motor responses to apomorphine in 6-OHDA lesioned rats, localizing the effects to the GP neurons, probably through modulation of the GABAergic system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0006-8993(98)01290-6 | DOI Listing |
J Neurosurg
January 2025
1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing.
Objective: The aim of this study was to evaluate outcomes of deep brain stimulation (DBS) for Meige syndrome, compare the efficacy of globus pallidus internus (GPi) and subthalamic nucleus (STN) as targets, and identify potential outcome predictors.
Methods: The PubMed, Embase, and Web of Science databases were systematically searched to collect individual data from patients with Meige syndrome receiving DBS. Outcomes were assessed using the Burke-Fahn-Marsden Dystonia Rating Scale motor (BFMDRS-M) and disability (BFMDRS-D) scores.
PLoS Biol
January 2025
Carney Institute for Brain Science, Department of Cognitive & Psychological Sciences, Brown University, Providence, Rhode Island, United States of America.
The basal ganglia (BG) play a key role in decision-making, preventing impulsive actions in some contexts while facilitating fast adaptations in others. The specific contributions of different BG structures to this nuanced behavior remain unclear, particularly under varying situations of noisy and conflicting information that necessitate ongoing adjustments in the balance between speed and accuracy. Theoretical accounts suggest that dynamic regulation of the amount of evidence required to commit to a decision (a dynamic "decision boundary") may be necessary to meet these competing demands.
View Article and Find Full Text PDFFront Neurosci
January 2025
Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
Introduction: Dysarthria is a motor speech disorder frequently associated with subcortical damage. However, the precise roles of the subcortical nuclei, particularly the basal ganglia and thalamus, in the speech production process remain poorly understood.
Methods: The present study aimed to better understand their roles by mapping neuroimaging, behavioral, and speech data obtained from subacute stroke patients with subcortical lesions.
Acta Neurol Belg
January 2025
Departamento de Radiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brasil.
J Neurosci
January 2025
Department of Biomedical Engineering, Michigan Technological University, 1400 Townsend Dr. Houghton, MI 49931.
Deep brain stimulation (DBS) effectively treats motor symptoms of advanced Parkinson's disease (PD), with the globus pallidus interna (GPi) commonly targeted. However, its therapeutic mechanisms remain unclear. We employed optogenetic stimulation in the entopeduncular nucleus (EP), the rat homologue of GPi, in a unilateral 6-OHDA lesioned female Sprague Dawley rat model of PD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!