R-Loop in the replication origin of human mitochondrial DNA is resolved by RecG, a Holliday junction-specific helicase.

Biochem Biophys Res Commun

Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Faculty of Medicine, Fukuoka, 812-8582, Japan.

Published: February 1999

Stable RNA-DNA hybrids (R-loops) prime the initiation of replication in Escherichia coli cells. The R-loops are resolved by Escherichia coli RecG protein, a Holliday junction specific helicase. A stable RNA-DNA hybrid formation in the mitochondrial D-loop region is also implicated in priming the replication of mitochondrial DNA. Consistent with this hypothesis, the 3' ends of the mitochondrial R-loop formed by in vitro transcription are located close to the initiation sites of the mitochondrial DNA replication. This mitochondrial R-loop is resolved by RecG in a dose-dependent manner. Since the resolution by RecG requires ATP, the resolution is dependent on the helicase activity of RecG. A linear RNA-DNA heteroduplex is not resolved by RecG, suggesting that RecG specifically recognizes the higher structure of the mitochondrial R-loop. This is the first example that R-loops of an eukaryotic origin is sensitive to a junction-specific helicase. The resolution of the mitochondrial R-loop by RecG suggests that the replication-priming R-loops have a common structural feature recognized by RecG.

Download full-text PDF

Source
http://dx.doi.org/10.1006/bbrc.1998.0133DOI Listing

Publication Analysis

Top Keywords

mitochondrial r-loop
16
mitochondrial dna
12
resolved recg
12
recg
9
mitochondrial
8
junction-specific helicase
8
helicase stable
8
stable rna-dna
8
escherichia coli
8
replication mitochondrial
8

Similar Publications

Three-stranded DNA: RNA hybrids known as R-loops form when the non-template DNA strand is displaced and the mRNA transcript anneals to its template strand. Although R-loop formation controls DNA damage response, mitochondrial and genomic transcription, and physiological R-loop formation, imbalanced formation of R-loop can jeopardize a cell's genomic integrity. Transcription regulation and immunoglobulin class switch recombination are two further specialized functions of genomic R-loops.

View Article and Find Full Text PDF

R-loop, a chromatin structure containing one RNA:DNA hybrid and one unpaired single-stranded DNA, plays multiple biological roles. However, due to technical limitations, the landscapes and potential functions of R-loops during embryogenesis remain elusive. Here, we developed a quantitative and high-resolution ultra-low input R-loop profiling method, named ULI-ssDRIP-seq, which can map global R-loops with as few as 1000 cells.

View Article and Find Full Text PDF

CircR-loop: a novel RNA:DNA interaction on genome instability.

Cell Mol Biol Lett

June 2024

Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China.

CircR-loop, a recently unearthed regulatory mechanism situated at the crossroads of circular RNA and DNA interactions, constitute a subset of R-loop. This circR-loop have emerged as a crucial player in pivotal regulatory functions within both animal and plant systems. The journey into the realm of circR-loop commenced with their discovery within the human mitochondrial genome, where they serve as critical directors of mitochondrial DNA replication.

View Article and Find Full Text PDF

Epitranscriptomic RNA modifications are crucial for the maintenance of glioma stem cells (GSCs), the most malignant cells in glioblastoma (GBM). 3-methylcytosine (mC) is a new epitranscriptomic mark on RNAs and METTL8 represents an mC writer that is dysregulated in cancer. Although METTL8 has an established function in mitochondrial tRNA (mt-tRNA) mC modification, alternative splicing of METTL8 can also generate isoforms that localize to the nucleolus where they may regulate R-loop formation.

View Article and Find Full Text PDF

Excessive nucleic acid R-loops induce mitochondria-dependent epithelial cell necroptosis and drive spontaneous intestinal inflammation.

Proc Natl Acad Sci U S A

January 2024

Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China.

Oxidative stress, which can be activated by a variety of environmental risk factors, has been implicated as an important pathogenic factor for inflammatory bowel disease (IBD). However, how oxidative stress drives IBD onset remains elusive. Here, we found that oxidative stress was strongly activated in inflamed tissues from both ulcerative colitis patients and Crohn's disease patients, and it caused nuclear-to-cytosolic TDP-43 transport and a reduction in the TDP-43 protein level.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!