Synergism with germ line transcription factor Oct-4: viral oncoproteins share the ability to mimic a stem cell-specific activity.

Mol Cell Biol

Gene Expression Programme, European Molecular Biology Laboratory, 69117 Heidelberg, Federal Republic of Germany.

Published: April 1999

Activation of transcription by Oct-4 from remote binding sites requires a cofactor that is restricted to embryonal stem cells. The adenovirus E1A protein can mimic the activity of this stem cell-specific factor and stimulates Oct-4 activity in differentiated cells. Here we characterize the Oct-4-E1A interaction and show that the E1A 289R protein harbors two independent Oct-4 binding sites, both of which specifically interact with the POU domain of Oct-4. Furthermore, we demonstrate that, like E1A, the human papillomavirus E7 oncoprotein also specifically binds to the Oct-4 POU domain. E7 and Oct-4 can form a complex both in vitro and in vivo. Expression of E7 in differentiated cells stimulates Oct-4-mediated transactivation from distal binding sites. Moreover, Oct-4, but not other Oct factors, is active when expressed in cells transformed by human papillomavirus. Our results suggest that different viruses have evolved oncoproteins that share the ability to target Oct-4 and to mimic a stem cell-specific activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC84056PMC
http://dx.doi.org/10.1128/MCB.19.4.2635DOI Listing

Publication Analysis

Top Keywords

stem cell-specific
12
binding sites
12
oct-4
9
oncoproteins share
8
share ability
8
mimic stem
8
cell-specific activity
8
differentiated cells
8
pou domain
8
domain oct-4
8

Similar Publications

Vitiligo is an autoimmune disease that has been recognized, stigmatized, and treated for millennia. Recent translational research has revealed key mechanisms of disease, including cellular stress, innate immune activation, T cell-mediated elimination of melanocytes from the skin resulting in clinically apparent white spots, as well as stem cell regeneration that reverses established lesions. Many of these pathways have been targeted therapeutically, leading to the first FDA-approved medication to reverse the disease, with many more in clinical trials.

View Article and Find Full Text PDF

Following injury, skeletal muscle undergoes repair via satellite cell (SC)-mediated myogenic progression. In SCs, the circadian molecular clock gene, Bmal1, is necessary for appropriate myogenic progression and repair with evidence that muscle molecular clocks can also affect force production. Utilizing a mouse model allowing for inducible depletion of Bmal1 within SCs, we determined contractile function, SC myogenic progression and muscle damage and repair following eccentric contractile-induced injury.

View Article and Find Full Text PDF

Due to their self-renewal and differentiation capabilities, pluripotent stem cells hold immense potential for advancing our understanding of human disease and developing cell-based or pharmacological interventions. Realizing this potential, however, requires a thorough understanding of the basal cellular mechanisms which occur during differentiation. Lipids are critical molecules that define the morphological, biochemical, and functional role of cells.

View Article and Find Full Text PDF

ENDOTHELIAL PROX1 INDUCES BLOOD-BRAIN BARRIER DISRUPTION IN THE CENTRAL NERVOUS SYSTEM.

bioRxiv

October 2024

Laboratory of Stem Cell and Neuro-Vascular Biology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.

The central nervous system (CNS) parenchyma has conventionally been believed to lack lymphatic vasculature, likely due to a non-permissive microenvironment that hinders the formation and growth of lymphatic endothelial cells (LECs). Recent findings of ectopic expression of LEC markers including Prospero Homeobox 1 (PROX1), a master regulator of lymphatic differentiation, and the vascular permeability marker Plasmalemma Vesicle Associated Protein (PLVAP), in certain glioblastoma and brain arteriovenous malformations (AVMs), has prompted investigation into their roles in cerebrovascular malformations, tumor environments, and blood-brain barrier (BBB) abnormalities. To explore the relationship between ectopic LEC properties and BBB disruption, we utilized endothelial cell-specific overexpression mutants.

View Article and Find Full Text PDF

Cpeb1 remodels cell type-specific translational program to promote fear extinction.

Sci Adv

January 2025

Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.

Protein translation is crucial for fear extinction, a process vital for adaptive behavior and mental health, yet the underlying cell-specific mechanisms remain elusive. Using a Tet-On 3G genetic approach, we achieved precise temporal control over protein translation in the infralimbic medial prefrontal cortex () during fear extinction. In addition, our results reveal that the disruption of cytoplasmic polyadenylation element binding protein 1 (Cpeb1) leads to notable alterations in cell type-specific translational programs, thereby affecting fear extinction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!