Solution structure of potassium channel-inhibiting scorpion toxin Lq2.

Proteins

Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique, UPR 9039, Marseille, France.

Published: March 1999

Lq2 is a unique scorpion toxin. Acting from the extracellular side, Lq2 blocks the ion conduction pore in not only the voltage- and Ca2+ -activated channels, but also the inward-rectifier K+ channels. This finding argues that the three-dimensional structures of the pores in these K+ channels are similar. However, the amino acid sequences that form the external part of the pore are minimally conserved among the various classes of K+ channels. Because Lq2 can bind to all the three classes of K+ channels, we can use Lq2 as a structural probe to examine how the non-conserved pore-forming sequences are arranged in space to form similar pore structures. In the present study, we determined the three-dimensional structure of Lq2 using nuclear magnetic resonance (NMR) techniques. Lq2 consists of an alpha-helix (residues S10 to L20) and a beta-sheet, connected by an alphabeta3 loop (residues N22 to N24). The beta-sheet has two well-defined anti-parallel strands (residues G26 to M29 and residues K32 to C35), which are connected by a type I' beta-turn centered between residues N30 and K31. The N-terminal segment (residues Z1 to T8) appears to form a quasi-third strand of the beta-sheet.

Download full-text PDF

Source
http://dx.doi.org/10.1002/(sici)1097-0134(19990301)34:4<417::aid-prot1>3.0.co;2-rDOI Listing

Publication Analysis

Top Keywords

scorpion toxin
8
classes channels
8
channels lq2
8
lq2
7
residues
6
channels
5
solution structure
4
structure potassium
4
potassium channel-inhibiting
4
channel-inhibiting scorpion
4

Similar Publications

Scorpion fauna is abundant in regions with arid and semi-arid climates, exposing these areas to a risk of envenomation, especially for children. Scorpion envenomations cause thousands of deaths each year, with notable incidences in the MENA region, South America, Latin and Central America, and India. Morocco is one of the countries most affected by this phenomenon; according to statistics from the Moroccan Poison Control and Pharmacovigilance Center (CAPM), approximately 8,565 scorpion stings and envenomations were recorded annually between 2016 and 2022, mainly among children.

View Article and Find Full Text PDF

Scorpion envenomation, especially from Hemiscorpius lepturus, poses a significant health risk, leading to considerable morbidity and mortality. The venom's major toxin, which includes phospholipase D (PLD), is responsible for various systemic complications. In prior studies, we identified a native phospholipase D (PLD) toxin as a key lethal factor in the venom of H.

View Article and Find Full Text PDF

Scorpion venom is a highly complicated cocktail of bioactive components including mucoproteins, enzymes, lipids, bioactive peptides, and other organic or inorganic molecules. Scorpion venom antimicrobial peptides are a class of small-molecule bioactive peptides extracted from scorpion venoms, which have shown a variety of biological activities, including antiviral, antibacterial, antifungal and antitumor actions. This review describes the progress of researches on the antiparasitic activities of scorpion venoms and their antimicrobial peptides, so as to provide insights into the research and development of novel antiparasitic agents.

View Article and Find Full Text PDF

Scorpion venom contains various bioactive peptides, many of which exhibit insecticidal activity. The majority of these peptides have a cystine-stabilized α-helix/β-sheet (CSαβ) motif. In addition to these peptides, scorpion venom also contains those with a cystine-stabilized α-helix/α-helix (CSαα) motif, which are known as κ-KTx peptides.

View Article and Find Full Text PDF

Envenomation accidents are usually diagnosed at the hospital through signs and symptoms assessment such as short breath, dizziness and vomiting, numbness, swilling, bruising, or bleeding around the affected site. However, this traditional method provides inaccurate diagnosis given the interface between snakebites and scorpion stings symptoms. Therefore, early determination of bites/stings source would help healthcare professionals select the suitable treatment for patients, thus improving envenomation management.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!