The functional conditions of the mandible are differentiated according to the number of kinematic degrees of freedom assigned to each mandibular movement. One degree of freedom: pro- and retrusive occlusal border movement. The interplay of the TMJs with the occluding teeth determines a compulsory course which corresponds to a 4-bar-chain guidance. 2 degrees of freedom: free sagittal mouth movement without tooth contact. Using graphic recordings of cyclic mandibular movements, the mobile hinge axis is identified as a mandibularly fixed line which is not directly categorized as a part of an anatomical structure. In the maxillary coordinate system, its movement describes a cylinder; sagittally, it describes a circle. The mandibular positions are clearly identifiable with 2 angles. The in vivo measurements show that neuromuscularly healthy systems supply the mandible with anticipatory guidance. 3 degrees of freedom: bolus function. The articular space in the TMJ is utilized.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/S0940-9602(99)80082-X | DOI Listing |
J Arthroplasty
January 2025
The University of Tennessee Health Science Center-Campbell Clinic Department of Orthopaedic Surgery and Biomedical Engineering, 1400 S. Germantown Rd, Germantown, TN, 38138. Electronic address:
Background: This study investigated the influence of surgical alignment techniques on knee joint biomechanics during stair negotiation tasks. Our hypothesis was that a more personalized joint alignment would result in reduced medial knee loading biomechanics to negotiate the stairs.
Methods: There were 28 adults (14 mechanical alignments [MA], 14 kinematic alignment [KA]) who underwent total knee arthroplasty (TKA) at least one year post-operatively and performed five stair ascent and descent trials at their preferred velocities.
Sensors (Basel)
January 2025
College of Resource Environmental and Safety Engineering, University of South China, Hengyang 421001, China.
To solve the issue of inconvenient and dangerous manual operation during the installation and removal of the main pipe plugging plate in the steam generator in nuclear power plants, a ten-degree-of-freedom plugging robot was designed in the present study that includes a collaborative robotic arm coupled with a servo electric cylinder. By establishing a joint coordinate system for the robot model, a D-H parameter model for the plate plugging robot was established, and the forward and inverse kinematics were solved. The volume level approximate convex decomposition algorithm was used to fit the steam generator model with a convex packet, and an experimental simulation platform was constructed.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Faculty of Minas Gerais (FAMINAS), Muriaé 36888-233, Brazil.
This paper focuses on the modeling, control, and simulation of an over-actuated hexacopter tilt-rotor (HTR). This configuration implies that two of the six actuators are independently tilted using servomotors, which provide high maneuverability and reliability. This approach is predicted to maintain zero pitch throughout the trajectory and is expected to improve the aircraft's steering accuracy.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China.
This paper proposes a hierarchical framework-based solution to address the challenges of vehicle state estimation and lateral stability control in four-wheel independent drive electric vehicles. First, based on a three-degrees-of-freedom four-wheel vehicle model combined with the Magic Formula Tire model (MF-T), a hierarchical estimation method is designed. The upper layer employs the Kalman Filter (KF) and Extended Kalman Filter (EKF) to estimate the vertical load of the wheels, while the lower layer utilizes EKF in conjunction with the upper-layer results to further estimate the lateral forces, longitudinal velocity, and lateral velocity, achieving accurate vehicle state estimation.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Cognitive Systems Lab, University of Bremen, 28359 Bremen, Germany.
This paper presents an approach for event recognition in sequential images using human body part features and their surrounding context. Key body points were approximated to track and monitor their presence in complex scenarios. Various feature descriptors, including MSER (Maximally Stable Extremal Regions), SURF (Speeded-Up Robust Features), distance transform, and DOF (Degrees of Freedom), were applied to skeleton points, while BRIEF (Binary Robust Independent Elementary Features), HOG (Histogram of Oriented Gradients), FAST (Features from Accelerated Segment Test), and Optical Flow were used on silhouettes or full-body points to capture both geometric and motion-based features.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!