Composite fluoropolymer-containing sorbents based on porous silicas were synthesized for the isolation and purification of biopolymers under nondenaturing conditions. Examples of the application of these sorbents in the separation of various mixtures of peptides and proteins and purification of nucleic acids from various sources (plasmid DNA and DNA from nucleated human blood cells) using the cartridge, column, and batch (sorption in a stirred volume) methods are presented. It was shown that the sorbents can be used in laboratory practice because they are selective to nucleic acids (DNA and RNA) and proteins. These materials combine the mechanical properties of the inorganic matrix with the specific sorption properties of the polymer phase and exhibit enhanced stability to alkaline hydrolysis. Alternative methods of preparing sorbents containing polytetrafluoroethylene, polytrifluorostyrene, and polyfluorobutadiene are described. By the example of polyfluorobutadiene-containing sorbents, a completely new method for obtaining fluorinated polymer phases was developed: the polymer phase was preliminarily formed on the surface of porous disperse carriers and was fluorinated with xenon difluoride.

Download full-text PDF

Source

Publication Analysis

Top Keywords

isolation purification
8
nucleic acids
8
polymer phase
8
sorbents
6
[composite fluorine
4
fluorine polymer-containing
4
polymer-containing sorbents
4
sorbents isolation
4
purification biopolymers]
4
biopolymers] composite
4

Similar Publications

First report of privet leaf blotch-associated virus (PLBaV) infecting lilac ( L.) in France.

Plant Dis

January 2025

INRA Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, INRA - Université de Bordeaux, CS20032, Villenave d'Ornon , France, 33882 cedex;

Privet leaf blotch-associated virus (PLBaV) is an Idaeovirus discovered by high-throughput sequencing (HTS) in privet (Ligustrum japonicum L) in southern Italy in 2017 (Navarro et al., 2017). In privet, it causes a leaf blotch disease with yellowish or whitish chlorotic blotches or ringspots.

View Article and Find Full Text PDF

Three bacterial strains, designated FZUC8N2.13, FBOR7N2.3 and FZUR7N2.

View Article and Find Full Text PDF

The rise in antimicrobial resistance poses a significant threat to global health, particularly among diabetic patients who are prone to urinary tract infections (UTIs). Pathogens that cause UTI among diabetic patients exhibit significant multidrug resistance (MDR) patterns, necessitating more precise empirical treatment strategies..

View Article and Find Full Text PDF

Description of six novel species sp. nov., sp. nov., sp. nov., sp. nov., sp. nov. and sp. nov., isolated from mangrove ecosystem.

Int J Syst Evol Microbiol

January 2025

State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China.

Six Gram-stain-positive and rod-shaped strains, designated FJAT-51614, FJAT-51639, FJAT-52054, FJAT-52991, FJAT-53654 and FJAT-53711, were isolated from a mangrove ecosystem. The condition for growth among the strains varied (pH ranging 5.0-11.

View Article and Find Full Text PDF

sp. nov. and sp. nov., two bacteria isolated from marine sediment in the East China Sea.

Int J Syst Evol Microbiol

January 2025

Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315800, PR China.

Two Gram-stain-negative, curved-rod-shaped, non-motile and aerobic bacteria W6 and I13 were isolated from marine sediment samples collected from Meishan Island located in the East China Sea. Catalase and oxidase activities and hydrolysis of Tween 40, 60 and 80 were positive for both strains, while nitrate reduction, indole production, methyl red reaction and HS production were negative. Phylogenetic analyses based on 16S rRNA and genome sequences revealed that strains W6 and I13 formed distinct phylogenetic lineages within the genera and , respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!